UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2011 question paper for the guidance of teachers

9701 CHEMISTRY

9701/23

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9701	23

1 (a) same proton number/atomic number (1) different mass number/nucleon number (1) [2]

(b)
$$A_r = \underline{(32 \times 95.00) + (33 \times 0.77) + (34 \times 4.23)}$$
 (1)

$$= \frac{3040 + 25.41 + 143.82}{100} = \frac{3209.23}{100}$$

which gives $A_r = 32.09$ (1) [2]

(c)

	number of				
isotopes	protons	neutrons	electrons		
²¹³ Po	84	129	84		
²³² Th	90	142	90		

allow **one mark** for each correct column if there are no 'column' marks, allow **maximum one mark** for a correct row

 (3×1) [3]

(d) (i) nucleon no. is 228 (1) proton no. is 88 (1)

(ii) Ra **not** radium (1) [3]

[Total: 10]

2 (a) (i) mass of C =
$$\frac{12 \times 1.32}{44}$$
 = 0.36g (1)

$$n(C) = \frac{0.36}{12} = 0.03 \tag{1}$$

(ii) mass of H =
$$\frac{2 \times 0.54}{18}$$
 = 0.06 g (1)

$$n(H) = \frac{0.06}{1} = 0.06 \tag{1}$$

(iii) yes **because** 0.03 mol of C are combined with 0.06 mol of H **or**C: H ratio is 1: 2 **or**empirical formula is CH₂
(1) [5]

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9701	23

(b) (i) C: H: O =
$$\frac{64.86}{12}$$
: $\frac{13.50}{1}$: $\frac{21.64}{16}$ (1)

= 5.41: 13.50 : 1.35

= 4:10:1

gives
$$C_4H_{10}O$$
 (1)

(ii)

(1)

(iii) $\begin{array}{|c|c|c|c|c|c|}\hline \\ CH_3CH_2CH_2CH_2OH & CH_3CCH_2OH & CH_3CCH_3 \\ & & & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ &$

[Total: 12]

[7]

(1)

3 (a) $C(g) \rightarrow C^{+}(g) + e$ correct equation (1) correct state symbols (1) [2]

(b) (i) Na and Mg

Mg has greater nuclear charge/more protons than Na (1)

in both atoms, the 3s electrons are in the same orbital/ same energy level/same shell (1)

(ii) Mg and Al

in Al outermost electron is in 3p rather than 3s (1)

3p electron is at higher energy **or** is further away/is more shielded from nucleus (1)

Page 4		Mark Scheme: Teachers' version	Syllabus	Paper	
		GCE AS/A LEVEL – October/November 2011	9701	23	
(iii)		and Ne He and Ne have the highest nuclear charges in their F	Period	(1)	
(iv)		Ne, and Ar g down the group,			
	vale	nce/outer shell electrons are farther from the nucleus		(1)	
	there	e is greater shielding		(1)	
	0	ction between valence electrons and nucleus is less o ctive nuclear charge is less	r	(1)	[8]
(c) (i)		n Na to C <i>I</i> eased nuclear charge/nuclear attraction		(1)	
(ii)	catio	on has fewer electrons than atom or on has lost outer electrons or on has fewer shells		(1)	
		cation has same nuclear charge as atom or on number is the same		(1)	[3]

3 (d) ignore any state symbols

MgO(s)	+	NaOH(aq)			\rightarrow	NO REACTION	(1)
MgO(s)	+	2 HC <i>l</i> (aq)			\rightarrow	$MgCl_2 + H_2O$	(1)
$Al_2O_3(s)$	+	2NaOH(aq)	+	3 H ₂ O(I)	\rightarrow	2 NaA <i>l</i> (OH) ₄ or	
$Al_2O_3(s)$	+	2NaOH(aq)	+	$H_2O(I)$	\rightarrow	2 NaA <i>l</i> O ₂ + 2H ₂ O or	(1)
$Al_2O_3(s)$	+	6NaOH(aq)	+	3 H ₂ O(I)	\rightarrow	2 Na ₃ A <i>l</i> (OH) ₆	
$Al_2O_3(s)$	+	6 HC <i>l</i> (aq)			\rightarrow	2 A <i>l</i> C <i>l</i> ₃ + 3 H ₂ O or	(1)
$Al_2O_3(s)$	+	6 HC <i>l</i> (aq)			\rightarrow	Al ₂ Cl ₆ + 3 H ₂ O	(1)
SO ₂ (g)	+	NaOH(aq)			\rightarrow	NaHSO ₃ or	(4)
SO ₂ (g)	+	2NaOH(aq)			\rightarrow	$Na_2SO_3 + H_2O$	(1)
SO ₂ (g)	+	HC <i>l</i> (aq)			\rightarrow	NO REACTION	(1)

[Total: 19]

4 (a) (i)
$$C_2H_5O$$
 (1) (ii) OH (1) [2]

Page 5	j	Mark Scheme: Teachers' version		Paper	
	GCE	E AS/A LEVEL – October/November 2011	9701	23	
(b) (i)	or structural	roup isomerism I isomerism v 'functional isomerism' or positional isomerism		(1)	
	do not anow	Turiculorial isomerism of positional isomerism			
(ii)					
	compound	d type of isomerism			
	Р	cis-trans or geometrical			
	Т	optical			
				(1 + 1)	[3]
(c) (i)	dehydration	/elimination		(1)	
(ii)	conc. H ₂ SO ₂	4 / P ₄ O ₁₀ / A <i>l</i> ₂ O ₃ / H ₃ PO ₄ / pumice		(1)	
(iii)	CH ₂ =CHCH	=CH ₂			
	allow CH ₂ =0	C=CHCH ₃		(1)	[3]
(d) (i)	CH.CH.CH	(OH)CH ₂ CH ₃		(1)	
(d) (i)	01130112011((011)01120113		(1)	
(ii)	steam conc. H ₂ SO	with H₃PO₄ catalyst or then water		(1 + 1)	
	only allow co	ondition mark if reagent mark has been given			
(iii)	$Cr_2O_7^2/H^+$ (MnO ₄ / H^+	or		(1)	[4]
				[Total:	12]
				_	_
(a) V is	HCHO			(1)	[1]
/b) /:\				(1)	
(b) (i)	ester			(1)	
(ii)	W is HCO ₂ C	CH ₃		(1)	[2]
(c) (i)	X is HOCH ₂	CH ₂ CO ₂ H		(1)	
(ii)	Y is HO ₂ CC	H ₂ CO ₂ H		(1)	[2]

5

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9701	23

(d) (i) **Z** is

$$CH_2$$
— CH_2 — C
 CH_2 — CH_2
 $CH_$

(ii) esterification or dehydration or elimination or condensation

(1) [2]

[Total: 7]