UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2011 question paper

for the guidance of teachers

9701 CHEMISTRY

9701/21

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

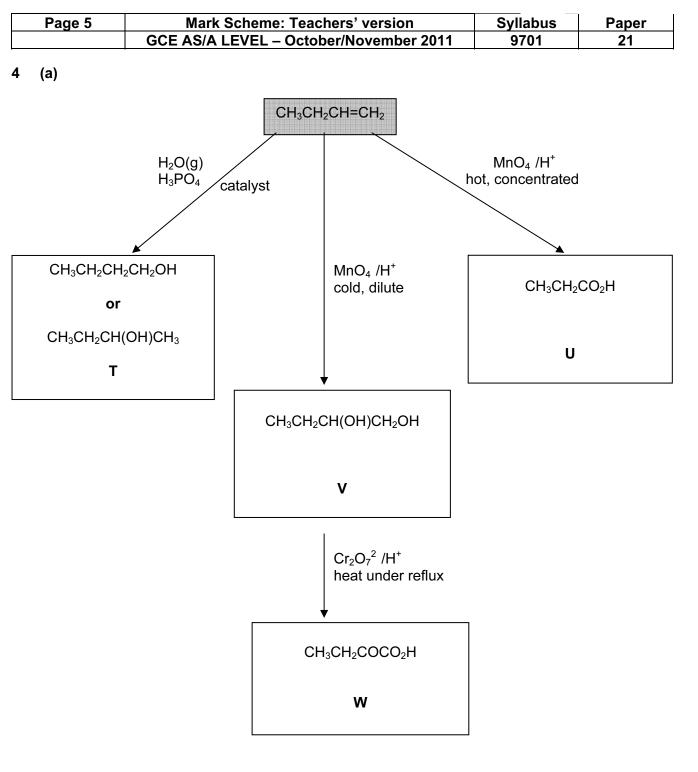
Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

(b) $C: H: O = 0.008: 0.016: 0.008 = 1:2:1$ allow $C: H: O = 0.096: 12: 0.016: 0.128 = 1:2:1$ gives CH_2O (1) [1] (c) (i) $M_t = mRT = 0.148 \times 8.31 \times 333$ $pV = 1.01 \times 10^5 \times 67.7 \times 10^{-6}$ = 59.89 allow 59.9 or 60 (1) (ii) $C_2H_4O_2$ (1) [3] (d) CH_3CO_2H (1) HCO_2CH_3 (1) [2]	Page 2		Mark Scheme: Teachers' version	Syllabus	Paper	
44 $n(C) = \frac{0.096}{12} = 0.008$ (1) (ii) mass of $H = \frac{2 \times 0.144}{18} = 0.016g$ (1) $n(H) = \frac{0.016}{1} = 0.016$ (1) $n(H) = \frac{0.016}{1} = 0.016$ (1) (iii) mass of oxygen = 0.240 - (0.096 + 0.016) = 0.128g (1) $n(O) = \frac{0.128}{16} = 0.008$ (1) $n(O) = \frac{0.128}{16} = 0.008$ (1) allow ecf at any stage [6] (b) $C : H : O = 0.008: 0.016 : 0.008 = 1:2:1$ [6] allow C : H : $O = 0.008: 0.016 : 0.018 = 1:2:1$ [1] gives CH_2O (1) [1] (c) (i) $M_c = mRT$ $= \frac{0.148 \times 8.31 \times 333}{1.01 \times 10^5 \times 67.7 \times 10^{-5}}$ (1) $= 59.89$ allow 59.9 or 60 (1) (ii) $C_2H_4O_2$ (1) [3] (d) CH_3CO_2H (1) [2] (e) the only products of the reaction are the two oxides H_2O and CO_2 and copper (1)			GCE AS/A LEVEL – October/November 2011	9701	21	
(ii) mass of $H = \frac{2 \times 0.144}{18} = 0.016g$ (1) $n(H) = \frac{0.016}{1} = 0.016$ (1) (iii) mass of oxygen = 0.240 - (0.096 + 0.016) = 0.128g (1) $n(O) = \frac{0.128}{16} = 0.008$ (1) $n(O) = \frac{0.128}{16} = 0.008$ (1) allow ccf at any stage [6] (b) C : H : O = 0.008: 0.016 : 0.008 = 1:2:1 allow C : H : O = $\frac{0.096}{12} : \frac{0.016}{1} : \frac{0.128}{16} = 1:2:1$ gives C H ₂ O (1) [1] (c) (i) $M_r = mRT = \frac{0.148 \times 8.31 \times 333}{1.01 \times 10^5 \times 67.7 \times 10^{-5}}$ (1) = 59.89 allow 59.9 or 60 (1) (ii) C ₂ H ₄ O ₂ (1) [3] (d) CH ₃ CO ₂ H (1) HCO ₂ CH ₃ (1) [2] (e) the only products of the reaction are the two oxides H ₂ O and CO ₂ and copper (1) [1]	1	(a) (i) mas	ss of C = $\frac{12 \times 0.352}{44}$ = 0.096g		(1)	
$n(H) = \underbrace{0.016}{1} = 0.016$ (1) (iii) mass of oxygen = 0.240 - (0.096 + 0.016) = 0.128g (1) n(O) = \underbrace{0.128}{16} = 0.008 (1) allow ecf at any stage [6] (b) C : H : O = 0.008: 0.016 : 0.008 = 1:2:1 allow C : H : O = \underbrace{0.096}{12} : \underbrace{0.016}{1} : \underbrace{0.128}{16} = 1:2:1 gives C H ₂ O (1) [1] (c) (i) $M_r = mRT = \underbrace{0.148 \times 8.31 \times 333}{pV}$ (1) (c) (i) $M_r = mRT = \underbrace{0.148 \times 8.31 \times 333}{1.01 \times 10^5 \times 67.7 \times 10^6}$ (1) (1) (i) C ₂ H ₄ O ₂ (1) (i) (i) C ₂ H ₄ O ₂ (1) (i) (i) C ₂ H ₄ O ₂ (1) (1) (2) (i) C ₂ H ₄ O ₂ (1) (1) (2) (i) C ₂ CH ₃ (1) (1) (2) (i) (2) (i) (i) products of the reaction are the two oxides H ₂ O and CO ₂ and copper (1) (1) (1)		n(C	$) = \frac{0.096}{12} = 0.008$		(1)	
(iii) mass of oxygen = $0.240 - (0.096 + 0.016) = 0.128g$ (1) $n(O) = \frac{0.128}{16} = 0.008$ (1) allow ecf at any stage [6] (b) C : H : O = $0.008: 0.016: 0.008 = 1:2:1$ allow C : H : O = $\frac{0.096}{12}: \frac{0.016}{1}: \frac{0.128}{16} = 1:2:1$ gives C H ₂ O (1) [1] (c) (i) $M_r = mRT = \frac{0.148 \times 8.31 \times 333}{1.01 \times 10^5 \times 67.7 \times 10^6}$ (1) = 59.89 allow 59.9 or 60 (1) (ii) C ₂ H ₄ O ₂ (1) [3] (d) CH ₃ CO ₂ H (1) HCO ₂ CH ₃ (1) [2] (e) the only products of the reaction are the two oxides H ₂ O and CO ₂ and copper (1) [1]		(ii) mas	ss of H = <u>2 × 0.144</u> = 0.016g 18		(1)	
n(O) = 0.128 = 0.008 (1) allow ecf at any stage [6] (b) C : H : O = 0.008: 0.016 : 0.008 = 1:2:1 allow C : H : O = 0.096 : 0.016 : 0.128 = 1:2:1 gives C H ₂ O (1) [1] (c) (i) $M_r = mRT = \frac{0.148 \times 8.31 \times 333}{1.01 \times 10^5 \times 67.7 \times 10^{-6}}$ (1) = 59.89 allow 59.9 or 60 (1) (ii) C ₂ H ₄ O ₂ (1) [3] (d) CH ₃ CO ₂ H (1) HCO ₂ CH ₃ (1) [2] (e) the only products of the reaction are the two oxides H ₂ O and CO ₂ and copper (1) [1]		n(H) = <u>0.016</u> = 0.016 1		(1)	
allow ecf at any stage [6] (b) $C: H: O = 0.008: 0.016: 0.008 = 1:2:1$ allow $C: H: O = 0.096: 0.016: 0.128 = 1:2:1$ gives CH_2O (1) [1] (c) (i) $M_r = mRT = 0.148 \times 8.31 \times 333$ (1) pV $1.01 \times 10^5 \times 67.7 \times 10^6$ $= 59.89$ (1) allow 59.9 or 60 (1) (ii) $C_2H_4O_2$ (1) [3] (d) CH_3CO_2H (1) HCO_2CH_3 (1) [2] (e) the only products of the reaction are the two oxides H_2O and CO_2 and copper (1) [1]		(iii) mas	ss of oxygen = 0.240 – (0.096 + 0.016) = 0.128g		(1)	
(b) $C: H: O = 0.008: 0.016: 0.008 = 1:2:1$ allow $C: H: O = \frac{0.096}{12}: \frac{0.016}{1}: \frac{0.128}{16} = 1:2:1$ gives $C H_2 O$ (1) [1] (c) (i) $M_r = mRT = \frac{0.148 \times 8.31 \times 333}{pV}$ (1) = 59.89 allow 59.9 or 60 (1) (ii) $C_2 H_4 O_2$ (1) [3] (d) $C H_3 CO_2 H$ (1) $H CO_2 C H_3$ (1) [2] (e) the only products of the reaction are the two oxides $H_2 O$ and CO_2 and copper (1) [1]		n(O) = <u>0.128</u> = 0.008 16		(1)	
allow C : H : O = 0.096 : 0.016 : 0.128 = 1:2:1 gives C H ₂ O (1) [1] (c) (i) $M_r = mRT = \frac{0.148 \times 8.31 \times 333}{1.01 \times 10^5 \times 67.7 \times 10^6}$ (1) = 59.89 allow 59.9 or 60 (1) (ii) C ₂ H ₄ O ₂ (1) [3] (d) CH ₃ CO ₂ H (1) HCO ₂ CH ₃ (1) [2] (e) the only products of the reaction are the two oxides H ₂ O and CO ₂ and copper (1) [1]		allo	w ecf at any stage			[6]
gives CH_2O (1) [1](c) (i) $M_r = mRT_{pV} = \frac{0.148 \times 8.31 \times 333}{1.01 \times 10^5 \times 67.7 \times 10^6}$ (1)= 59.89(1)allow 59.9 or 60(1)(ii) $C_2H_4O_2$ (1) [3](d) CH_3CO_2H (1) HCO_2CH_3 (1) [2](e) the only products of the reaction are the two oxides H_2O and CO_2 and copper(1) [1]		(b) C:H:C	D = 0.008: 0.016 : 0.008 = 1:2:1			
(c) (i) $M_r = mRT_{pV} = \frac{0.148 \times 8.31 \times 333}{1.01 \times 10^5 \times 67.7 \times 10^6}$ (1) = 59.89 allow 59.9 or 60 (1) (ii) $C_2H_4O_2$ (1) [3] (d) CH_3CO_2H (1) HCO_2CH_3 (1) [2] (e) the only products of the reaction are the two oxides H ₂ O and CO ₂ and copper (1) [1]		allow C	: H : O = <u>0.096</u> : <u>0.016</u> : <u>0.128</u> = 1:2:1 12 1 16			
$= 59.89$ allow 59.9 or 60 (1) (i) $C_2H_4O_2$ (1) [3] (d) CH_3CO_2H (1) (1) HCO_2CH_3 (1) [2] (e) the only products of the reaction are the two oxides H_2O and CO_2 and copper (1) [1]		gives C	H ₂ O		(1)	[1]
allow 59.9 or 60 (1) (ii) $C_2H_4O_2$ (1) (d) CH_3CO_2H (1) HCO_2CH_3 (1) (e) the only products of the reaction are the two oxides H_2O and CO_2 and copper (1)		(c) (i) <i>M</i> _r	$= mRT = \frac{0.148 \times 8.31 \times 333}{1.01 \times 10^5 \times 67.7 \times 10^{-6}}$		(1)	
(ii) $C_2H_4O_2$ (1) [3] (d) CH_3CO_2H (1) HCO_2CH_3 (1) [2] (e) the only products of the reaction are the two oxides H_2O and CO_2 and copper (1) [1]			= 59.89			
(d) CH_3CO_2H (1) HCO_2CH_3 (1)(e) the only products of the reaction are the two oxides H_2O and CO_2 and copper(1)(1)(1)		allo	w 59.9 or 60		(1)	
HCO_2CH_3 (1) [2] (e) the only products of the reaction are the two oxides H_2O and CO_2 and copper (1) [1]		(ii) C₂⊦	I ₄ O ₂		(1)	[3]
(e) the only products of the reaction are the two oxides H_2O and CO_2 and copper (1) [1]		(d) CH ₃ CO ₂	ŀΗ		(1)	
		HCO₂Cł	H ₃		(1)	[2]
[Total: 13]		(e) the only	products of the reaction are the two oxides H_2O and CO	D_2 and copper	(1)	[1]
					[Total:	13]

	Page 3		6	Mark Scheme: Teachers' version	Syllabus	Paper	
				GCE AS/A LEVEL – October/November 2011	9701	21	
2	(a)	cor	rect e	S⁺(g) + e quation tate symbols		(1) (1)	[2]
	(b)	(b) from Na to Ar, electrons are added to the same shell/have same shielding electrons are subject to increasing nuclear charge/proton number electrons are closer to the nucleus or atom gets smaller				(1) (1) (1)	[3]
	(c)	(i)	in M	and A <i>t</i> g outermost electron is in 3s and <i>l</i> outermost electron is in 3p		(1)	
			is fu	lectron is at higher energy or rther away from the nucleus or ore shielded from the nucleus		(1)	
		(ii)		nd P S one 3p orbital has paired electrons and P 3p sub-shell is singly filled		(1)	
			paire	ed electrons repel		(1)	[4]

(d) (i) and (ii)

element	Na	Mg	Al	Si	Р	S
conductivity	high	high	_	moderate	low	low
melting point	low	high		high	low	low
	(1)	(1)		(1)	(1)	(1)
one mark for each correct column						

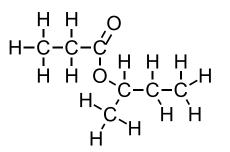

(e) germanium/Ge

(1) [1]

[5]

[Total: 15]

Page 4			Paper	,
	GCE AS/A LEVEL – October/Nover	mber 2011 9701	21	
(a) the	overall enthalpy change/energy change/ ΔH fo	or a reaction	(1)	
is ir	dependent of the route taken or dependent of the number of steps involved <i>v</i> ided the initial and final conditions are the sa	me	(1)	[2]
(b) (i)	$K_2CO_3 + 2HCl \rightarrow 2KCl + H_2O + CO_2$		(1)	
(ii)	heat produced = m × c × δ T = 30.0 × 4.18 × 8 = 652.08 J per 0.0200 mol of		(1)	
(iii)	$0.020 \text{ mol } K_2 CO_3 = 652.08 \text{ J}$			
	1 mol K ₂ CO ₃ = $\frac{652.08 \times 1}{0.0200}$ = 32604 J			
	enthalpy change = –32.60 kJmol ¹		(1)	
(iv)	to prevent the formation of KHCO ₃ or to ensure complete neutralisation		(1)	[4]
(c) (i)	$KHCO_3 + HCl \to KCl + H_2O + CO_2$		(1)	
(ii)	heat absorbed = m × c × δ T = 30.0 × 4.18 × 3 = 463.98 J per 0.0200 mol of		(1)	
(iii)	$0.020 \text{ mol KHCO}_3 \equiv 463.98 \text{ J}$			
	1 mol KHCO ₃ ≡ <u>463.98 × 1</u> = 23199 J 0.0200			
	enthalpy change = +23.20 kJmol ¹		(1)	[3]
(d) ∆ <i>H</i>	= 2 × (+23.20) – (–32.60) = +79.00 kJ mol ¹		(2)	[2]
			[Total:	: 11]



correct T	(1)
correct U	(1)
correct V	(1)
correct >CO group in W	(1)
correct $-CO_2H$ group in W	(1) [5]

PMT

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9701	21

or

correct structures correctly displayed ester group

(1) (1) [2]

[Total: 7]

(1)

- (a) (i) 1primary
alcohol not hydroxyl(1)
(1)
 - 2 aldehyde not carbonyl
 - (ii)

5

test 1			
reagent	Na	PCl ₃ /PCl ₅ /PBr ₃	RCO_2H/H^+
observation	gas/H ₂ /effervescence/ fizzing	HC <i>t</i> /HBr steamy fumes	fruity smell
test 2			
reagent	Tollens' reagent	Fehling's reagent	2,4-dinitro- phenylhydrazine
observation	Ag mirror/silver/ black ppt	brick-red ppt red ppt	orange/red/yellow ppt/solid

only award the observation mark if reagent is correct

(4) [7]

Page 7	Mark Scheme: Teachers' version	Syllabus	Paper	
	GCE AS/A LEVEL – October/November 2011	9701	21	
(b) (i)				
H()			
	→ OH		(1)	
<i>(</i>)				
(ii)	â			
Н	OH			
	0		(1)	

5 (c)

route	starting compound	first reagent	intermediate X	second reagent	intermediate Y	third reagent	final compound
A/1	HOCH ₂ CHO	PC <i>l</i> ₃ PC <i>l</i> ₅ SOC <i>l</i> ₂ etc.	C <i>I</i> CH₂CHO	K ₂ Cr ₂ O ₇ /H ⁺ KMnO₄/H ⁺ KMnO₄/OH Tollens' or Fehling's reagents	C <i>I</i> CH₂CO₂H	NH ₃	H ₂ NCH ₂ CO ₂ H
A/2	HOCH ₂ CHO	HBr P/Br₂ etc.	BrCH₂CHO	K ₂ Cr ₂ O ₇ /H ⁺ KMnO₄/H ⁺ KMnO₄/OH Tollens' or Fehling's reagents	BrCH₂CO₂H	NH ₃	H ₂ NCH ₂ CO ₂ H
B/1	HOCH₂CHO	PC <i>l</i> ₃ PC <i>l</i> ₅ SOC <i>l</i> ₂ etc.	C/CH₂CHO	NH₃	H ₂ NCH ₂ CHO	K ₂ Cr ₂ O ₇ /H ⁺ KMnO₄/H ⁺ KMnO₄/OH Tollens' or Fehling's reagents	H ₂ NCH ₂ CO ₂ H
B/2	HOCH₂CHO	HBr P/Br₂ etc.	BrCH₂CHO	NH_3	H ₂ NCH ₂ CHO	K ₂ Cr ₂ O ₇ /H ⁺ KMnO₄/H ⁺ KMnO₄/OH Tollens' or Fehling's reagents	H ₂ NCH ₂ CO ₂ H
с	HOCH₂CHO	Tollens' or Fehling's reagents	HOCH ₂ CO ₂ H	KBr/conc. H₂SO₄	BrCH₂CO₂H	NH₃	H ₂ NCH ₂ CO ₂ H
mark		(1)	(1)	(1)	(1)	(1)	

[5]

PMT

[Total: 14]