UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2009 question paper

for the guidance of teachers

9701 CHEMISTRY

9701/21

Paper 21 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2009 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2			Ma	ark Scheme	Syllabus	Paper				
		GCE A//	AS LEVEL -	9701	21					
1 (a)	sar diff	ne pro erent	oton numbe mass numb	r/atomic nur er/nucleon	mber number				(1) (1)	[2]
(b)	A _r	= (2	4×78.60)+	(25×10.11) 100		(1)				
		18	86.4 + 252.							
		=	100)	=	_				
	whi per	ich giv nalise	/es A _r = 24 (–1) for mis	.33 use of signi	ficant figu	res			(1)	[2]
(c))							-		
				isotopes		number of	f			
					protons	neutrons	electrons	-		
				²²⁶ Ra	88	138	88	-		
				²³⁸ U	92	146	92	-		
		allov if the allov	v one mark ere are no ce v maximum	-	(3 × 1)	[3]				
(d)) (i)	Ra ²⁺							(1)	
	(ii)	less allov	than (502 + v answers ir			(1)				
		ionis or or	ation energ must be les size of atom electrons ar			(1)				
		or		easeu sniel	ung dowr	Group			(1)	
		allov	v ecf on ans	wer to (i)						[3]
					[Total:	10]				

Page 3			8	Mark Scheme: Teachers' version	Syllabus	Paper		
				GCE A/AS LEVEL – October/November 2009	9701	21		
2	(a)	(i)	configu or there	iration ends in s ² e are two electrons in outermost/valence shell		(1)		
		(ii)	RaCO₃	/radium carbonate		(1)	[2]	
	(b)	anc cat	ode hode	$Br^- \rightarrow \frac{1}{2}Br_2 + e^-$ $Ra^{2^+} + 2e^- \rightarrow Ra$		(1) (1)	[2]	
	(c)	(i)	water	slow reaction gas bubbles gas is colourless		any 2 (2)		
			steam	Mg glows vigorous reaction white solid formed		any 2 (2)		
		(ii)	Mg + H	$H_2O \rightarrow MgO + H_2$		(1)	[5]	
	(d)	(i)	Ra(s) +	+ 2H ₂ O(I) \rightarrow Ra(OH) ₂ (aq) + H ₂ (g)		eqn. (1) s.s. (1)		
		(ii)	radium gas evo	dissolves/disappears olved				
			gas is o heat ev	colourless volved		any 2 (2)		
		(iii)	10–14			(1)		
		(iv)	more – becaus or elec	no mark for this alone se reactivity of metals increases down the Group strons are further from nucleus				
			or Ra i	s a stronger reducing agent		(1)	[6]	
						[Total:	: 15]	

Page 4			Mark Scheme: Teachers' version									Syllabus		Pape	ər		
			GCE A/AS LEVEL – October/November 2009							9	970)1	21				
3	(a) (i)	$\Delta H_{\rm f}^{\rm e}$	Cł –7	H₄ · ′5	+	C <i>l</i> 2 0	\rightarrow	Cł –	H₃C <i>1</i> 82	+	F -	IC <i>1</i> -92				(1)	I
		∆H°	reaction = =	=82 =99	2 + (∙ ∂ kJ i	–92) - mol ^{–1}	- (–75)								(1)	
	(ii)	brok	C en C 4	H₄ –H 10	+	I ₂ I–I 151	→ mad	е	CH₃I C–I 240		+	HI H–I 299				(1)	I
		∆H°	reaction = =	= -24 = +22	10 + 2 kJ i	(–299 mol ^{–1}	9) + 41	10 +	151							(1)	
	(iii)	activ	ation e	energ	y is	too gi	reat									(1)	[5]
	(b) (i)	initia C <i>l</i> ₂ + prop	tion - uvl – agatioi	→ 2C n	1											(1) (1) (1)	
		CH_4 CH_3	+ C1 - + Cl ₂	$\rightarrow CH \rightarrow C$	H₃ + H₃C	HC1 1 + C	l								both ne	eeded (1)	
		term	ination													(1)	
		CH₃ CH₃	+ CH₃ + C <i>l</i> -	\rightarrow (\rightarrow CH	C₂H∉ H₃C <i>l</i>	or or											
		C <i>l</i> +	$Cl \rightarrow$	Cl ₂												(1)	
	(ii)	CH ₃ /	methy	l radio	cal											(1)	[7]

[Total: max 16]

allow one mark if **both A and D** are correctly identified but in **both** cases, the type of isomerism is incorrect

(1 + 1) [4]

PMT

- (b) (i) dehydration/elimination (1) (ii) conc. $H_2SO_4/P_4O_{10}/Al_2O_3/pumice$ etc. (1)
 - (iii) CH₂=CHCH=CH₂/butadiene/buta-1,3-diene (1) [3]

(c) (i)	$CH_3CH_2CH(OH)CH_3$ (1				
(ii)	steam conc. H ₂ SO ₄	with H₃PO₄ catalyst or then water	(1 + 1)		
(iii)	$Cr_{2}O_{7}^{2-}/H^{+}$		(1)	[4]	

(d) functional group isomerism
or structural isomerism
not positional isomerism(1) [1]

[Total: 12]

	Page 7	Mark Scheme: Teachers' version	Syllabus	Paper	
		GCE A/AS LEVEL – October/November 2009	9701	21	
5	(a) G is HCI	HO/methanal		(1)	[1]
	(b) (i) carb not	ooxylic acid/carboxyl/–CO₂H acid		(1)	
	(ii) H is	CH ₃ CO ₂ H/ethanoic acid		(1)	
	(iii) J is allow	$CH_{3}CH(OH)CO_{2}H/2$ -hydroxypropanoic acid w HOCH ₂ CH ₂ CO ₂ H/3-hydroxypropanoic acid		(1)	[3]
	(c) K is CH ₃	COCO₂H		(1)	[1]

(d) (i) L is

allow as ecf on $HOCH_2CH_2CO_2H/3$ -hydroxypropanoic acid

(1)

(ii) esterification allow elimination/dehydration/condensation (1) [2]

[Total: 7]