UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2008 question paper

9701 CHEMISTRY

9701/02

Paper 2 (Theory 1), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2008 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2		2	Mark Scheme	Syllabus	Paper	
			•	GCE A/AS LEVEL – October/November 2008	9701	2
1	by lo or by		by lo or by	stance that speeds up a chemical reaction (1) owering E_{a} y providing an alternative reaction pathway rithout being used up in the process (1)		
		(ii)	2H ₂ C	$D_2 \rightarrow 2H_2O + O_2(1)$		[3]
	(b)	(i)	alkaı	nes or paraffins (1)		
		(ii)	whei	D ₂ : O ₂ and C ₁₅ H ₃₂ : 23O ₂ (1) nce C ₁₅ H ₃₂ : 46H ₂ O ₂ (1) v e.c.f. on (a)(ii)		[3]
	(c)	(i)	n(C ₁	$H_{32} = 212 (1)$ ${}_{5}H_{32}) = \frac{212 \times 10^{6}}{212} = 1 \times 10^{6} \text{ mol}$ v e.c.f. on wrong $M_{\rm r}$ of C ₁₅ H ₃₂ (1)		
		(ii)	mas: final	O ₂) required = 46×10^6 mol (1) s of H ₂ O ₂ = $34 \times 46 \times 10^6$ g = 1564 tonnes answer must be in tonnes (1) v e.c.f. on (b)(ii) and (c)(i)		[4]
	(d)	the	y wou	Ild dissolve (1)		[1] [Total: 11]
2	(a)	(i)	H–C C=C	Ξ−Η 117 to 120° (1) Ξ=Ο 180° (1)		
		(ii)	mole	ecule contains both ketone and alkene (1)		[3]
	(b)	(i)	C_2H_2	$_{2}O + 2O_{2} \rightarrow 2CO_{2} + H_{2}O(1)$		
		(ii)	from or	eqn., $42 \text{ g } C_2 \text{H}_2 \text{O} \rightarrow 48 \text{ dm}^3 \text{ of } \text{CO}_2 (1)$ whence $3.5 \text{ g } C_2 \text{H}_2 \text{O} \rightarrow \frac{48 \times 3.5}{42} \text{ dm}^3 \text{ of } \text{O}_2$ = $4.0 \text{ dm}^3 \text{ of } \text{CO}_2 (1)$ $n(\text{C}_2 \text{H}_2 \text{O}) = \frac{42}{3.5} = 0.0833 (1)$ $n(\text{CO}_2) = 2 \times 0.083 = 0.0166 (1)$ vol. of $\text{CO}_2 = 0.0166 \times 24 = 4.0 \text{ dm}^3 (1)$	CO ₂ (1)	
				allow e.c.f. on wrong eqn. in (b)(i) penalise significant figure error		[4]

Page		Syllabus	Paper
	GCE A/AS LEVEL – October/November 2008	9701	2
(c) (i) (ii)	enthalpy change when 1 mol of a compound is formed (1) from its elements (1) in their standard states under standard conditions (1) $C + O_2 \rightarrow CO_2$ -395 kJ mol ⁻¹ $H_2 + \frac{1}{2}O_2 \rightarrow H_2O$ -286 kJ mol ⁻¹ $C_2H_2O + 2O_2 \rightarrow 2CO_2 + H_2O$ -1028 kJ mol ⁻¹ $2C + H_2 + \frac{1}{2}O_2 \rightarrow C_2H_2O \Delta H = 2(-395) + (-286$	-(-1028)	
	correct cycle (1) use of 2 for C/CO_2 (1) answer (1)		[(
(d) H ₂	O/water/steam (1)		[
			[Total: 14
			•
	ode $Cl^{-}(aq) \rightarrow \frac{1}{2} Cl_2(g) + e^{-}(1)$ thode $H^{+}(aq) + e^{-} \rightarrow \frac{1}{2} H_2(g)$ $2H_2O(I) + 2e^{-} \rightarrow H_2(g) + 2OH^{-}(aq)(1)$		
co	rrect state symbols (1)		[
(b) be	cause the iron in steel will react with chlorine (1)		[
(c) (i)	sodium hydroxide/NaOH (1) $2H_2O + 2e^- \rightarrow H_2 + 2OH^-$ or $2H^+ + 2e^- \rightarrow H_2$ (1) leaving OH ⁻ in solution as NaOH (1)		[;
(d) Na P	burns with a yellow flame/forms a white solid (1) $2Na + Cl_2 \rightarrow 2NaCl(1)$ burns with a white flame/forms a colourless liquid (PCl ₃)) or a white solid (F	PC <i>l</i> ₅) (1)
	$P + 1\frac{1}{2}Cl_2 \rightarrow PCl_3 \text{ or } P_4 + 6Cl_2 \rightarrow 4PCl_3$ or $P + 2\frac{1}{2}Cl_2 \rightarrow PCl_5 \text{ or } P_4 + 10Cl_2 \rightarrow 4PCl_5(1)$		[
Si	$Cl_2 = 6 \text{ to } 7 (1)$ $Cl_4 = 0 \text{ to } 3 (1)$		
Si	Cl ₂ dissolves without reaction (1) Cl ₄ reacts with water/hydrolyses (1)		
	$Cl_4 + 2H_2O \rightarrow SiO_2 + 4HCl$ or $Cl_4 + 4H_2O \rightarrow Si(OH)_4 + 4HCl$ or		
	$Cl_4 + 4H_2O \rightarrow SiO_2.2H_2O + 4HCl(1)$		[{
			Cotal: 15 may

[Total: 15 max]

PMT

Page 4	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2008	9701	2

4

organic reaction	type of reaction		reagent(s)	
CH ₃ CHO →	nucleophilic	(1)	HCN	
CH₃CH(OH)CN	addition	(1)	or HCN and CN⁻	(1)
$CH_3CH_2CH_2CH_3 \rightarrow$	free radical	(1)	Br ₂	
CH ₃ CH ₂ CHBrCH ₃	substitution	(1)	or Br ₂ in an organic not Br ₂ (aq)	solvent (1)
CH ₃ CH(OH)CH ₃ →	elimination	(1)	conc. H₂SO₄	(1)
CH ₃ CH=CH ₂				
$CH_3CH=CH_2 \rightarrow$	addition		KMnO₄/MnO₄ [−]	(1)
CH₃CH(OH)CH₂OH	or oxidation	(1)		

[10]

[Total: 10]

[4]

	Page 5	Mark Scheme	Syllabus	Paper
		GCE A/AS LEVEL – October/November 2008	9701	2
5	(a) C ₄ H ₈ O ₂ (1)		[1]

5 (a) $C_4H_8O_2(1)$

each correct structure is worth (1)

(b)

HCO ₂ CH(CH ₃) ₂	HCO ₂ CH ₂ CH ₂ CH ₃	$\begin{array}{c} CH_3CO_2CH_2CH_3\\ \textbf{or}\\ CH_3CO_2C_2H_5 \end{array}$	$\begin{array}{c} CH_3CH_2CO_2CH_3\\ \textbf{or}\\ C_2H_5CO_2CH_3 \end{array}$
w	x	Y	Z

(c)	(i)	presence of >C=O group/carbonyl group (1)	
	(ii)	–CHO group/aldehyde group is absent or ketone is present (1)	
	(iii)	alcohol C is (CH ₃) ₂ CHOH allow e.c.f. on (c)(i) and (ii) (1)	
	(iv)	correct identification of candidate's ester (W in this case)	
		allow e.c.f. on (c)(iii) (1)	[4]
(d)	non		
		chiral centres are present in any of the four esters w e.c.f. on candidate's compounds in (a) (1)	[1]
			[Total: 10]