CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2013 series

9701 CHEMISTRY

9701/22

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

[Total: 11]

Page 2	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2013	9701	22

1	(a)		a base is a proton acceptor or a lone pair donor a weak base is not fully ionised e.g. $NH_3 + H_2O = NH_4^+ + OH^-$ or		(1) (1)	
			B + H ⁺ ⇒ BH ⁺ or equ ⇒ is necessary	uivalent	(1)	[3]
	(b) ((i)	stated pressure stated temperature named catalyst	greater than 1 atm up to 5 atm 400 to 500 $^{\circ}\text{C}$ V ₂ O ₅ /vanadium(V) oxide	(1) (1) (1)	
	((ii)	SO ₃ is dissolved in cond and then diluted with wa not 'SO ₃ dissolved in wa		(1)	[4]
	(c) ((i)	with concentrated sulf C1CH2CH=CHC1	uric acid	(1)	
			with ammonia H ₂ NCH ₂ CH(OH)CH ₂ NH ₂		(1)	
	((ii)	nucleophilic substitution		(1) (1)	[4]

Page 3	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2013	9701	22

2 (a) (i)
$$n(H_2SO_4) = \frac{25.0 \times 1.00}{1000} = 0.025 \text{ mol}$$
 (1)
(ii) $n(NaOH) = \frac{16.2 \times 2.00}{1000} = 0.0324 \text{ mol}$ (1)
(iii) $n(H_2SO_4)$ reacting with NaOH = $\frac{0.0324}{2} = 0.0162 \text{ mol}$ (1)
(iv) $n(H_2SO_4)$ reacting with NH₃ = 0.025 - 0.0162 = 0.0088 mol (1)
(v) $n(NH_3)$ reacting with $H_2SO_4 = 2 \times 0.0088 = 0.0176 \text{ mol}$ (1)
(vi) $n(NaNO_3)$ reacting = $n(NH_3)$ produced = 0.0176 mol (1)
(vii) mass of NaNO₃ that reacted = 0.0176 x 85 = 1.496 g (1)
(viii) % of NaNO₃ = $\frac{1.496 \times 100}{1.64} = 91.2195122 = 91.2$
give one mark for the correct expression (1) give one mark for answer given as $91.2 - i.e$ to 3 sig. fig. (1) allow ecf where appropriate

(b)
$$NaNO_3 + 5$$
 and $NH_3 - 3$ both required (1) [1]

[Total: 10]

Page 4	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2013	9701	22

3 (a) penalise (-1) the use of names of elements or formulae of compounds

(i)	Ca	(1)	
(ii)	O or N or C	(1)	
(iii)	C or N or S or F or Cl or Br	(1)	
(iv)	Si or Ge or B	(1)	
(v)	Alor Sior Por Sor H	(1)	
(vi)	Al	(1)	[6]

(b) (i)

element	Na	Mg	Αl	Si	Р	S
oxide	Na ₂ O	MgO	A <i>l</i> ₂ O ₃	SiO ₂	P ₂ O ₅ /P ₄ O ₁₀ or P ₂ O ₃ /P ₄ O ₆	SO ₂
flame	yellow or orange	white	white	white	white or yellow	blue

formula of oxide (1) colour of flame (1)

(ii)

chloride	NaC1	MgCl ₂	A <i>l</i> C <i>l</i> ₃ or A <i>l</i> ₂ C <i>l</i> ₆	SiC14	PC <i>l</i> ₃ or PC <i>l</i> ₅	SC <i>l</i> ₂ or S ₂ C <i>l</i> ₂
рН	7	6.5 to 6.9	1 to 4			

formula of chloride (1) pH of solution formed (1) [4]

(c) (i)

(1)

- (ii) intermolecular forces/van der Waals' forces are stronger or greater in ICl
 ICl has most electrons or has the largest permanent dipole
 (1)
- (iii) IC1 (1) greatest difference in electronegativity is between I and C1 (1) [5]

[Total: 15]

Page 5	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2013	9701	22

(a) 4

А	Br ₂ in an inert organic solvent	CH₃CHBrCHBrCH₂OH
В	PC <i>l</i> ₅	CH₃CH=CHCH₂C <i>l</i>
С	H ₂ and Ni catalyst	CH ₃ CH ₂ CH ₂ CH ₂ OH
D	NaBH₄	NO REACTION
E	K₂Cr₂O ₇ /H ⁺ , heat under reflux	CH₃CH=CHCO₂H

give one mark for each correct answer

 (5×1) [5]

(1) [1]

(c)

correct C_4 with C=C in position 2

accept cis form

(1) (1)

correctly shown -CO₂H

allow ecf on candidate's answer to E in (a)

Page 6	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2013	9701	22

(d) (i) reagent observation

2,4-dinitrophenylhydrazine red/orange ppt.
Tollens' reagent silver mirror **or**grey ppt. **or**black ppt.

black ppt. brick red ppt.

Fehling's reagent brick red ppt.

correct reagent (1) observation (1)

(ii) reduction **or** nucleophilic addiction (1) [3]

(e) C: H: O =
$$\frac{73.7}{12}$$
: $\frac{12.3}{1}$: $\frac{14.0}{16}$
= 6.14: 12.3: 0.875
= 7.01: 14.1: 1

gives C₇H₁₄O formula must be given

(1) [2]

[Total: 13]

Page 7	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2013	9701	22

5 (a) $C_4H_8O_2$ (1) [1]

(b)

HCO ₂ CH ₂ CH ₂ CH ₃	HCO ₂ CH(CH ₃) ₂
W	X
CH ₃ CO ₂ CH ₂ CH ₃	CH ₃ CH ₂ CO ₂ CH ₃
Y	Z

give one mark for each correct answer (4×1) [4]

- (c) (i) —CHO or aldehyde absent(1)(ii) >CO or carbonyl absent(1)(iii) —CO2H or carboxylic acid present(1)
- (d) (i) CH_3CO_2H or ethanoic acid (1) (1) Y above (1) [2]
- (e) none no chiral carbon atoms present (1) [1]

[Total: 11]