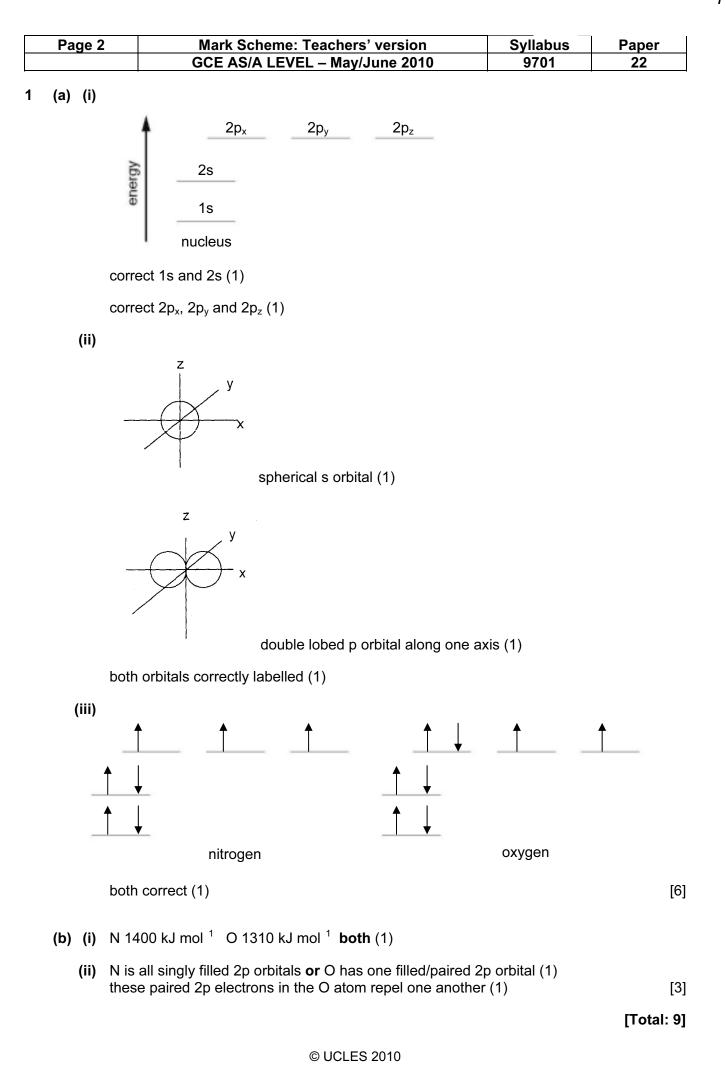
UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2010 question paper

for the guidance of teachers

9701 CHEMISTRY

9701/22 Paper 2 (AS Structured Questions), maximum raw mark 60


This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

[2]

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2010	9701	22

2 (a)

element	particle	formula
copper	cation	Cu ²⁺ allow Cu ⁺
argon	atom or molecule	Ar

one mark for each correct row **or** column (2 × 1)

(b)		cations held in 'sea' of delocalised electrons (1) by strong metallic bonds (1) van der Waals' forces between molecules (1) which are weak (1)	[4]
(c)	(i)	oxidising agent or electron acceptor (1) Ar has very high first I.E or <i>E</i> _a for reaction is very high or Ar has full valency shell/complete octet (1)	[2]
(d)		n Ne to Xe more electrons in atom (1) nce more induced dipoles/van der Waals' forces (1)	[2]
			[Total: 10]

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2010	9701	22

3 (a)

oxide	Na ₂ O	MgO	Al_2O_3	SiO ₂	P_4O_6	SO ₂
bonding	ionic	ionic	ionic/covalent	covalent	covalent	covalent
structure	giant	giant	giant	giant	simple	simple

(i) fully correct 'bonding' row (1)

(ii)	fully correct 'structure' row (1)	[2]
("')		[4]

(b) Al_2O_3 or $SiO_2(1)$

(ii)		NaOH + $H_2SO_3 \rightarrow NaHSO_3 + H_2O$	
	or	$2NaOH + H_2SO_3 \rightarrow Na_2SO_3 + 2H_2O (1)$	[5]

 (d) MgO(I) conducts (1) MgO(I) contains free/mobile ions (1) SiO₂(I) does not conduct (1) SiO₂(I) has no free ions (1)

[4]

[1]

[Total: 12]

[2]

[4]

[3]

[3]

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2010	9701	22
-	—	•	

4 (a)
$$C: H: O = \frac{48.7}{12} : \frac{8.1}{1} : \frac{43.2}{16}$$
 (1)
= 4.06 : 8.1 : 2.70
= 1.5 : 3 : 1
= 3 : 6 : 2
empirical formula is $C_3H_6O_2$ (1)

(b) (i)
$$M_{\rm r} = \frac{mRT}{pV} = \frac{0.13 \times 8.31 \times 400}{1.00 \times 10^5 \times 58.0 \times 10^{-6}}$$
 (1)

= 74.5 (1)

(ii) $C_3H_6O_2 = 36 + 6 + 32 = 74 (1)$ $n(C_3H_6O_2) = 74.5$ hence molecular formula of **E** is $C_3H_6O_2 (1)$

(c) structures of F are

HCO ₂ CH(CH ₃) ₂	HCO ₂ CH ₂ CH ₂ CH ₃	CH ₃ CO ₂ CH ₂ CH ₃	CH ₃ CH ₂ CO ₂ CH ₃
S	Т	U	V

each correct structure is worth one mark (3×1)

(d) (i) H₂SO₄/HC1/mineral acid or NaOH/KOH (1)

- (ii) carboxylic acid **not** 'acid' (1) [2]
- (e) (i) aldehyde (1)
 - (ii) must be a primary alcohol (1)
 - (iii) CH_3OH or CH_3CH_2OH or $CH_3CH_2CH_2OH$ (1)
- (f) (i) S (1)
 - (ii) only S is not the ester of a primary alcohol
 or only S is the ester of a secondary alcohol (1)

[Total: 16]

	Page	6	Mark Scheme: Teachers' version	Syllabus	Paper
		GCE AS/A LEVEL – May/June 2010		9701	22
5	(a) (i) pro	propan-1-ol or propan-2-ol (1)		
	(ii)			
			OH		
			OH or	(1)	
	(iii) der	nydration or elimination (1)		[3]
	(b) (i		bon (1) decomposition/cracking of the alcohol (1)		
	(iij) to a	avoid 'sucking back' of water into the hot tube (1)		
	(iii) SiC	D ₂ (1)		
	(iv)) con	ic. H_2SO_4 or P_4O_{10} or Al_2O_3 or H_3PO_4 (1)		[5]
	(c) (i) CH	₃ CHBrCH ₂ Br (1)		
	(ii) СН	$_{3}$ CH(OH)CH $_{2}$ OH (1)		
	(iii) СН	₃ CO ₂ H (1)		[3]
	(d) (i) (ve	ry) high pressure or Ziegler-Natta catalyst (1)		
	(ii) doe	es not biodegrade or gives harmful combustion products	(1)	[2]
					[Total: 13]