UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2008 question paper

9701 CHEMISTRY

9701/02

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2008 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2		Mark Scheme GCE A/AS LEVEL – May/June 2008			Syllabus 9701	Paper 02	
(a)	(i)	2 (1)				5701	
()	(ii)		veen 104° an	d 105° (1)			[2
(b)) eth	anal		CH₃CHO	A (1)		
	eth	anol		CH ₃ CH ₂ OH	C (1)		
	me	thoxy	methane	CH ₃ OCH ₃	A (1)		
	2-n	nethyl	propane	(CH ₃) ₂ CHCH ₃	B (1)		[4
(c)	(i)	hydr	ogen bonds ((1)			
	(ii)	corre	ect dipole on				
				nown between the lo atom in an –OH grou			
			•	om of CH₃OH or H₂O the hydrogen bond			
			CH ₃ O:H—(H	D—H			
		or					
		:	H 0:H(H	D—CH₃			[4

(d) hydrogen bonds exist between H₂O molecules (1)

hydrogen bonds cannot form	
between $C_2H_5OC_2H_5$ molecules (1)	[2]

[Total: 12]

Page 3			Mark Scheme	Syllabus	Paper		
			GCE A/AS LEVEL – May/June 2008	9701	02		
(a)	$F(g) \rightarrow F^*(g) + e^-$						
	corr	ect e	quation (1)				
	cori	ect st	tate symbols (1)		[
(b)	fron	n Na t	to Ar, electrons				
	are	adde	d to the same shell/have same shielding (1)				
	are	subje	ect to increasing nuclear charge/proton number (1)				
	are	close	r to the nucleus or atom gets smaller (1)		[
(c)	(i)	Ala	nd Mg				
		in A <i>l</i>	outermost electron is in 3p rather than 3s (1)				
		•	lectron is at higher energy further away/is more shielded from nucleus (1)				
	(ii)	P an	d S				
			3p sub-shell is singly filled for S one 3p orbital has paired electrons (1)				
		paire	ed electrons repel (1)		[

(d) (i) and (ii)

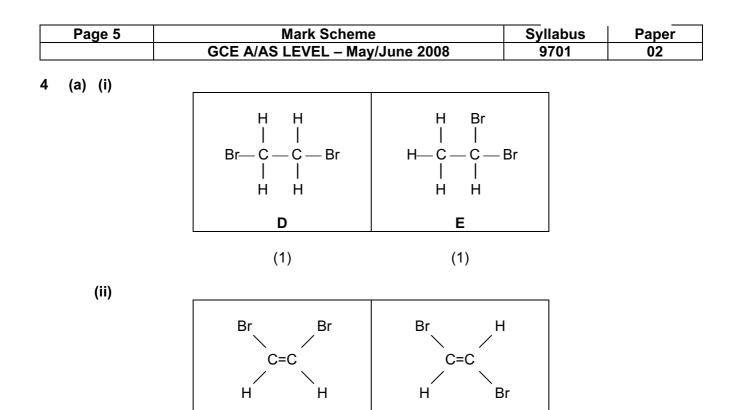
element	Na	Mg	Al	Si	Р	S
melting point	low		high	high	low	low
conductivity	high		high	moderate	low	low
	(1)		(1)	(1)	(1)	(1)

one mark for each correct column

(e) because they had not been discovered (1)

[5]

[1]


[Total: 15]

Syllabus 9701 Paper 02

3	(a) high temperature (and/or pressure) provide enough energy (1)							
		break N=N bond to provide E_a for N ₂ /O ₂ reaction (1)	[2]					
	(b) (i)	two from C, CO, hydrocarbon, SO ₂ , H ₂ S, NO ₂ /NO _x (1 + 1)						
		not CO ₂ , H ₂ , H ₂ O, SO ₃ , NO						
	(ii)	Pt or Pd or Pt/Rh or Pt/Pd/Rh (1)						
	(iii)	$2NO + 2CO \rightarrow 2CO_2 + N_2$ or 2NO + C \rightarrow CO ₂ + N ₂ (1)	[4]					
	(c) (i)	$K_{c} = \frac{[NO]^{2}[Cl_{2}]}{[NOCl]^{2}} $ (1)						
		units are mol dm ⁻³ (1)						
	(ii)	at 230 °C $K_{\rm c} = \frac{(1.46 \times 10^{-3})^2 \times 1.15 \times 10^{-2}}{(2.33 \times 10^{-3})^2}$						
		= $4.5 \times 10^{-3} \text{ mol dm}^{-3}$ (1)						
		at 465 °C $K_{\rm c} = \frac{(7.63 \times 10^{-3})^2 \times 2.14 \times 10^{-4}}{(3.68 \times 10^{-4})^2}$						
		= $9.2 \times 10^{-2} \text{ mol dm}^{-3}$ (1)						
		allow ecf on answer to part (i)						
	(iii)	endothermic because K_c increases with temperature mark is for explanation allow ecf on answer to part (ii) (1)	[5]					
	(d) (i)	equilibrium moves to RHS (1)						
		more moles on RHS (1)						
	(ii)	no change to equilibrium position (1)						
		[NOC1] and [NO] change by same amount (1)	[4]					
			[Total: 15]					

Mark Scheme GCE A/AS LEVEL – May/June 2008

Page 4

trans

(1)

(1)

cis

[4]

PMT

(b) (i) hydrogen (1)

nickel catalyst - allow platinum or palladium (1)

(ii) isomer formed **must** be 1,2-dibromoethane (**D** above)

because

cis isomer has one Br atom on **each** carbon atom (1) mark is for the reason but wrong isomer is penalised

[3]

[Total: 7]

Page 6		6	Mark Scheme			Syllabus	Paper
			GCE A/AS LI	EVEL – May	y/June 2008	9701	02
5 (a	ı) (i)	silve	er or black ppt. (1)				
	(ii)		O=C—C=O	or	$HO_2CCO_2H(1)$		
			HÔ ÔH	allow	anion		[2]
(b	o) (i)		NC CN	or	NCCH(OH)CH(OH	H)CN (1)	
			HO_C_C_OH H H	allow	NCCH(OH)CHO		
	(ii)	nucl	eophilic addition (1)				
	(iii)		HO ₂ C CO ₂ H	or	HO ₂ CCH(OH)CH(OH)CO ₂ H (1)	
			НО—С—С—ОН Н Н	allow	HO ₂ CCH(OH)CH(D (ecf)	
							[3]
(c	;) (i)		О=С—С=О НО ОН	or	HO ₂ CCO ₂ H (1)		
	(ii)		Н Н 	or	HOH ₂ CCH ₂ OH (1))	
			HO_C_C_OH H H	allow	HOH₂CCHO		
	(iii)	NaB	H ₄ or LiA <i>l</i> H ₄ or H ₂ /Ni	(1)			[3]
(d	l) bot	t h oxi	dation and reduction	allow disp	roportionation (1)		[1]
(e	e) HO)—C≡	C—OH – candidate's	compound	must be $C_2H_2O_2$		
	-OF	H pres	sent (1)				
	C≡(C pre	sent (1)				[2]
							[Total: 11]