

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Subsidiary Level and Advanced Level

### CHEMISTRY

Paper 1 Multiple Choice

9701/11 October/November 2013 1 hour

Additional Materials:

Multiple Choice Answer Sheet Soft clean eraser Soft pencil (type B or HB is recommended) Data Booklet

### **READ THESE INSTRUCTIONS FIRST**

Write in soft pencil.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Write your name, Centre number and candidate number on the Answer Sheet in the spaces provided unless this has been done for you.

DO NOT WRITE IN ANY BARCODES.

There are **forty** questions on this paper. Answer **all** questions. For each question there are four possible answers **A**, **B**, **C** and **D**.

Choose the **one** you consider correct and record your choice in **soft pencil** on the separate Answer Sheet.

#### Read the instructions on the Answer Sheet very carefully.

Each correct answer will score one mark. A mark will not be deducted for a wrong answer. Any rough working should be done in this booklet. Electronic calculators may be used.

This document consists of 15 printed pages and 1 blank page.



## Section A

For each question there are four possible answers, **A**, **B**, **C**, and **D**. Choose the **one** you consider to be correct.

1 At the age of 17, in a woodshed in Ohio, Charles Martin Hall discovered the commercial process for the production of aluminium metal by the electrolysis of a mixture of bauxite,  $Al_2O_3$ , and cryolite,  $Na_3AlF_6$ .

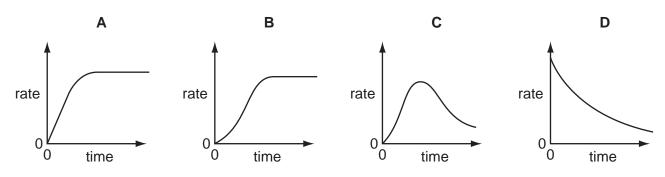
What is the main purpose of the cryolite?

- **A**  $Al_2O_3$  is covalent, and  $AlF_6^{3-}$  ions interact with it to produce  $Al^{3+}$  ions which can be discharged at the cathode.
- **B** Cryolite is a base, forming NaA $lO_2$  with bauxite, enabling aluminium to be discharged at the anode.
- **C** Cryolite minimises the release of O<sup>2–</sup> ions at the graphite anodes, which are otherwise burnt away to CO.
- **D** Cryolite reduces the melting point of the bauxite.
- 2 In which reaction does a single nitrogen atom have the greatest change in oxidation number?
  - $\textbf{A} \quad 4\text{NH}_3 \ \textbf{+} \ 5\text{O}_2 \ \rightarrow \ 4\text{NO} \ \textbf{+} \ 6\text{H}_2\text{O}$
  - $\textbf{B} \quad 3\text{NO}_2 \ \textbf{+} \ \text{H}_2\text{O} \ \rightarrow \ 2\text{HNO}_3 \ \textbf{+} \ \text{NO}$
  - **C**  $2NO + O_2 \rightarrow 2NO_2$
  - $\textbf{D} \quad 4NH_3 \ \textbf{+} \ 6NO \ \rightarrow \ 5N_2 \ \textbf{+} \ 6H_2O$
- **3** The following half reactions occur when potassium iodate(V),  $KIO_3$ , in hydrochloric acid solution oxidises iodine to  $ICl_2^-$ .

$$\begin{split} \mathrm{IO_3^-} + \ 2\mathrm{C}{\it l}^- \ + \ 6\mathrm{H}^+ \ + \ 4\mathrm{e}^- \ \rightarrow \ \mathrm{IC}{\it l}_2^- \ + \ 3\mathrm{H_2O} \\ \\ \mathrm{I_2} \ + \ 4\mathrm{C}{\it l}^- \ \rightarrow \ 2\mathrm{IC}{\it l}_2^- \ + \ 2\mathrm{e}^- \end{split}$$

What is the ratio of  $IO_3^-$  to  $I_2$  in the balanced chemical equation for the overall reaction?

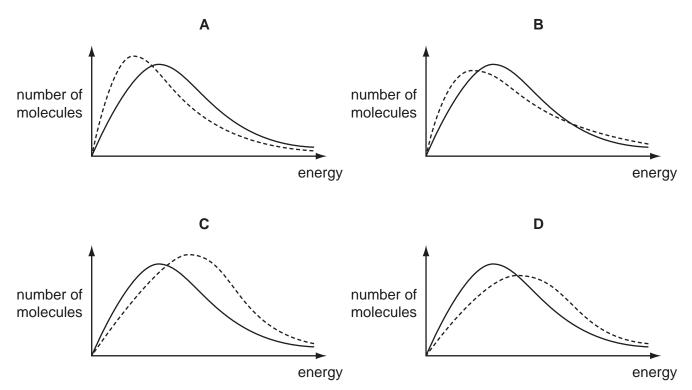
**A** 1:1 **B** 1:2 **C** 1:4 **D** 2:1


**4** Use of the Data Booklet is relevant to this question.

In which set do all species contain the same number of electrons?

- **B** F<sup>-</sup>, Br<sup>-</sup>, Cl<sup>-</sup>
- **C** Na<sup>+</sup>, Mg<sup>2+</sup>, A $l^{3+}$
- $\textbf{D} \quad \textbf{K}_2\textbf{SO}_4, \, \textbf{K}_2\textbf{SeO}_4, \, \textbf{K}_2\textbf{TeO}_4$

5 An autocatalytic reaction is a reaction in which one of the products catalyses the reaction.


Which curve was obtained if the rate of reaction was plotted against time for an autocatalytic reaction?



6 The diagrams below show the Boltzmann distribution for air at two temperatures.

The solid line represents the distribution at –20  $^{\circ}\text{C}.$ 

The dotted line represents the distribution at -10 °C.



Which diagram is correct?

- 7 Which stage in the free radical substitution of methane by chlorine will have the lowest activation energy?
  - **A**  $CH_{3}\bullet + Cl_{2} \rightarrow CH_{3}Cl + Cl\bullet$  **B**  $Cl\bullet + Cl\bullet \rightarrow Cl_{2}$ **C**  $Cl\bullet + CH_{4} \rightarrow CH_{3}\bullet + HCl$
  - **D**  $Cl_2 \rightarrow Cl \bullet + Cl \bullet$
- 8 Use of the Data Booklet is relevant to this question.

The approximate percentage composition of the atmosphere on four different planets is given in the table below.

The density of a gas may be defined as the mass of 1 dm<sup>3</sup> of the gas measured at s.t.p.

Which mixture of gases has the greatest density?

|   | planet major gases/<br>% by number of molecules |                                           |  |
|---|-------------------------------------------------|-------------------------------------------|--|
| Α | Jupiter                                         | H <sub>2</sub> 89.8, He 10.2              |  |
| в | Neptune                                         | $H_280.0$ , He 19.0, CH <sub>4</sub> 1.0  |  |
| С | Saturn                                          | $H_296.3$ , He 3.25, CH <sub>4</sub> 0.45 |  |
| D | Uranus                                          | $H_2 82.5$ , He 15.2, CH <sub>4</sub> 2.3 |  |

9 Nitrogen reacts with hydrogen to produce ammonia.

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$

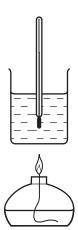
A mixture of 2.00 mol of nitrogen, 6.00 mol of hydrogen, and 2.40 mol of ammonia is allowed to reach equilibrium in a sealed vessel of volume 1 dm<sup>3</sup> under certain conditions. It was found that 2.32 mol of nitrogen were present in the equilibrium mixture.

What is the value of  $K_c$  under these conditions?

$$\mathbf{A} \quad \frac{(1.76)^2}{(2.32)(6.96)^3}$$
$$\mathbf{B} \quad \frac{(1.76)^2}{(2.32)(6.32)^3}$$

$$\mathbf{C} \quad \frac{(2.08)^2}{(2.32)(6.32)^3}$$

$$\mathbf{D} = \frac{(2.40)^2}{(2.32)(6.00)^3}$$

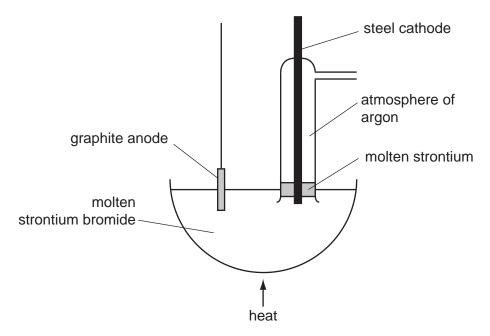

**10** Use of the Data Booklet is relevant to this question.

Which sodium compound contains 74.2% by mass of sodium?

- A sodium carbonate
- B sodium chloride
- **C** sodium hydroxide
- D sodium oxide
- **11** Use of the Data Booklet is relevant to this question.

A student carried out an experiment to determine the enthalpy change for the combustion of methanol.

The following results were obtained by the student.




| start temperature of the water        | 20 <i>°</i> C |
|---------------------------------------|---------------|
| final temperature of the water        | 53 °C         |
| mass of alcohol burner before burning | 259.65 g      |
| mass of alcohol burner after burning  | 259.15 g      |
| mass of glass beaker plus water       | 150.00 g      |
| mass of glass beaker                  | 50.00 g       |

How much of the heat energy produced by the burning of methanol went into the water?

**A** 209 J **B** 13 794 J **C** 20 691 J **D** 22 154 J

**12** Strontium metal can be obtained by the electrolysis of molten strontium bromide, SrBr<sub>2</sub>, using the apparatus shown in the diagram.



Why is an atmosphere of argon used around the cathode?

- **A** A thin film of a compound of strontium and argon forms on the surface protecting the freshly formed metal.
- **B** The argon keeps the strontium molten.
- **C** The argon stops the molten strontium rising too high in the tube.
- **D** Without the argon, strontium oxide would form in the air.
- **13** A metal, **X**, reacts with water to produce a colourless solution which gives a white precipitate when mixed with aqueous sulfuric acid.

What is metal X?

- A barium
- **B** magnesium
- **C** potassium
- D sodium
- 14 Which property increases in value going down Group II?
  - A electronegativity
  - B ionic radius
  - C maximum oxidation number
  - D second ionisation energy

15 Which row correctly identifies the uses of some of the compounds of Group II metals?

|   | used as a<br>refractory lining<br>in kilns | used in agriculture<br>to increase the pH<br>of a soil |
|---|--------------------------------------------|--------------------------------------------------------|
| Α | CaO                                        | Ca(OH) <sub>2</sub>                                    |
| в | CaO                                        | Mg(OH) <sub>2</sub>                                    |
| С | MgO                                        | Ca(OH) <sub>2</sub>                                    |
| D | MgO                                        | Mg(OH) <sub>2</sub>                                    |

**16** Solid potassium halides react with concentrated sulfuric acid, according to the following equations.

What is the largest change in the oxidation number of sulfur in each of these reactions?

|   | reaction 1 | reaction 2 | reaction 3 |
|---|------------|------------|------------|
| Α | 0          | 0          | 4          |
| в | 0          | 2          | 4          |
| С | 0          | 2          | 8          |
| D | 0          | 4          | 8          |

- **17** Which statement explains the observation that magnesium hydroxide dissolves in aqueous ammonium chloride, but not in aqueous sodium chloride?
  - **A** The ionic radius of the  $NH_4^+$  ion is similar to that of  $Mg^{2+}$  but not that of  $Na^+$ .
  - **B**  $NH_4Cl$  dissociates less fully than NaCl.
  - **C** The Na<sup>+</sup> and Mg<sup>2+</sup> ions have the same number of electrons.
  - **D** The  $NH_4^+$  ion can donate a proton.

**18** Transition metals and their compounds are used as catalysts.

Which row is correct?

|   | transition metal present<br>in the catalyst used in<br>the Contact process | transition metal present<br>in the catalyst used in<br>the Haber process |
|---|----------------------------------------------------------------------------|--------------------------------------------------------------------------|
| Α | iron                                                                       | iron                                                                     |
| В | iron                                                                       | vanadium                                                                 |
| С | vanadium                                                                   | iron                                                                     |
| D | vanadium                                                                   | vanadium                                                                 |

**19** Consecutive elements **X**, **Y** and **Z** are in the third period of the Periodic Table. Element **Y** has the highest first ionisation energy and the lowest melting point of these three elements.

What could be the identities of X, Y and Z?

- A sodium, magnesium, aluminium
- **B** magnesium, aluminium, silicon
- $\label{eq:constraint} \textbf{C} \quad \text{aluminium, silicon, phosphorus}$
- D silicon, phosphorus, sulfur
- 20 A new industrial preparation of ethyl ethanoate has been developed using cheap sources of ethanol.

$$CH_{3}CH_{2}OH \xrightarrow{Cu \text{ catalyst}} CH_{3}CHO \xrightarrow{Cu \text{ catalyst}} CH_{3}CHO \xrightarrow{+ CH_{3}CH_{2}OH} CH_{3}CH(OH)OCH_{2}CH_{3}$$

$$\downarrow Cu \text{ catalyst} \\ -2[H] \xrightarrow{-2[H]} CH_{3}CO_{2}CH_{2}CH_{3}$$

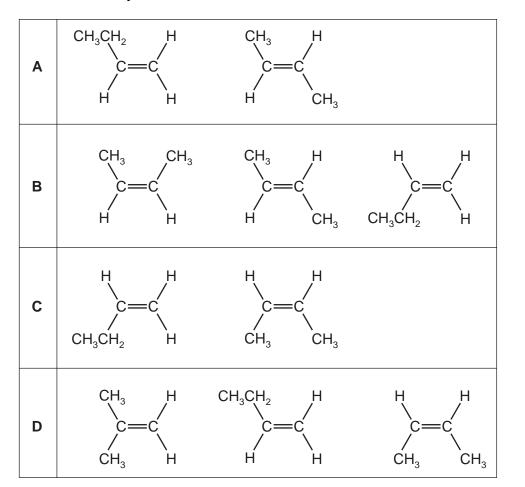
Which process is involved at some stage in this reaction sequence?

- A electrophilic addition
- B nucleophilic addition
- **C** nucleophilic substitution
- D reduction

- 21 Which reaction will give the best yield of 1-chloropropane?
  - A chlorine gas with propene gas in the dark
  - **B** propan-1-ol with dilute NaCl(aq)
  - **C** propan-1-ol with  $PCl_5$
  - **D** propene with dilute HCl(aq)
- 22 The compound 'leaf alcohol' is partly responsible for the smell of new-mown grass.

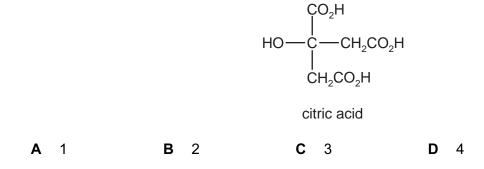
# CH<sub>3</sub>CH<sub>2</sub>CH=CHCH<sub>2</sub>CH<sub>2</sub>OH

# leaf alcohol


What will be formed when 'leaf alcohol' is oxidised using an excess of hot, acidified K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub>(aq)?

- A CH<sub>3</sub>CH<sub>2</sub>CH(OH)CH(OH)CH<sub>2</sub>CO<sub>2</sub>H
- B CH<sub>3</sub>CH<sub>2</sub>COCOCH<sub>2</sub>CO<sub>2</sub>H
- C CH<sub>3</sub>CH<sub>2</sub>CH=CHCH<sub>2</sub>CO<sub>2</sub>H
- $\textbf{D} \quad CH_3CH_2CO_2H \text{ and } HO_2CCH_2CO_2H$
- 23 Which compound exhibits stereoisomerism?
  - A CH<sub>3</sub>CHC<sup>1</sup>CH<sub>3</sub>
  - **B**  $CH_3CHClCH_2Cl$
  - **C**  $CH_3CCl_2CH_3$
  - **D**  $CH_2ClCH_2CH_2Cl$
- **24** A carbanion is an organic ion in which a carbon atom has a negative charge. A carbocation is an organic ion in which a carbon atom has a positive charge.

The reaction between aqueous sodium hydroxide and 1-bromobutane proceeds by an  $S_{\rm N}2$  mechanism.


How should the first step in the mechanism be described?

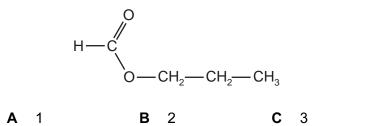
- A attack by a nucleophile on a carbon atom with a partial positive charge
- **B** heterolytic bond fission followed by an attack by an electrophile on a carbanion
- **C** heterolytic bond fission followed by an attack by a nucleophile on a carbocation
- **D** homolytic bond fission followed by an attack by a nucleophile on a carbocation

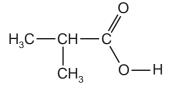


25 What are the only structures formed when butan-2-ol is heated with concentrated  $H_2SO_4$ ?

**26** How many moles of hydrogen, H<sub>2</sub>, are evolved when an excess of sodium metal is added to one mole of citric acid?




27 Primary alcohols can be oxidised to aldehydes using either acidified potassium dichromate(VI) or acidified potassium manganate(VII). Both these oxidising agents change colour as they are reduced.


| What is the colour of each | oxidising agent before and after it has reacted? |
|----------------------------|--------------------------------------------------|
|                            | existency agent before and alter it has reacted. |

|   | acidified potassiu | m dichromate(VI) | acidified potassium manganate(VII) |            |  |  |
|---|--------------------|------------------|------------------------------------|------------|--|--|
|   | before             | after            | before                             | after      |  |  |
| Α | green              | orange           | purple                             | colourless |  |  |
| в | orange             | green            | colourless                         | purple     |  |  |
| С | orange             | green            | purple                             | colourless |  |  |
| D | purple             | colourless       | orange                             | green      |  |  |

- 28 In which reaction is the organic compound oxidised?
  - **A**  $CH_3CH_2OH$  + concentrated  $H_3PO_4$
  - **B** CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CHO + Tollens' reagent
  - **C** CH<sub>3</sub>COCH<sub>3</sub> + 2,4-dinitrophenylhydrazine reagent
  - **D**  $CH_3CN$  + dilute  $H_2SO_4$
- **29** How many of the compounds shown will react with aqueous sodium hydroxide to form the sodium salt of a carboxylic acid?







D

Δ

| 30 | Which types | of | bond | breakage | and | bond | formation | occur | in | the | addition | polymerisation | of |
|----|-------------|----|------|----------|-----|------|-----------|-------|----|-----|----------|----------------|----|
|    | alkenes?    |    |      |          |     |      |           |       |    |     |          |                |    |

|   | bond breakage      | bond formation     |
|---|--------------------|--------------------|
| Α | $\pi$ only         | σ only             |
| в | $\pi$ only         | $\sigma$ and $\pi$ |
| С | $\sigma$ and $\pi$ | $\sigma$ only      |
| D | $\sigma$ and $\pi$ | $\sigma$ and $\pi$ |

# Section B

For each of the questions in this section, one or more of the three numbered statements **1** to **3** may be correct.

Decide whether each of the statements is or is not correct (you may find it helpful to put a tick against the statements that you consider to be correct).

The responses **A** to **D** should be selected on the basis of

| A          | В                     | D        |         |
|------------|-----------------------|----------|---------|
| 1, 2 and 3 | <b>1</b> and <b>2</b> | 2 and 3  | 1 only  |
| are        | only are              | only are | is      |
| correct    | correct               | correct  | correct |

No other combination of statements is used as a correct response.

**31** X is a particle with 18 electrons and 20 neutrons.

What could be the symbol of X?

- 1 <sup>38</sup><sub>18</sub> Ar
- 2 <sup>40</sup><sub>20</sub>Ca<sup>2+</sup>
- 3  $^{39}_{19}$ K<sup>+</sup>
- **32** Use of the Data Booklet is relevant to this question.

Carbon and nitrogen are adjacent in the Periodic Table.

Which properties do they both have?

- 1 There is an empty 2p orbital in one atom of the element.
- 2 The principal quantum number of the highest occupied orbital is 2.
- 3 They form compounds in which their atoms form bonds with four other atoms.
- **33** What are necessary properties of a dynamic equilibrium?
  - 1 Equal amounts of reactants and products are present.
  - 2 Concentrations of reactants and products remain constant.
  - 3 The rate of the forward reaction is the same as the rate of the reverse reaction.

The responses **A** to **D** should be selected on the basis of

| A                        | A B      |          | D       |  |
|--------------------------|----------|----------|---------|--|
| <b>1, 2</b> and <b>3</b> | 1 and 2  | 2 and 3  | 1 only  |  |
| are                      | only are | only are | is      |  |
| correct                  | correct  | correct  | correct |  |

No other combination of statements is used as a correct response.

34 If  $N_2O_4$  gas is placed in a sealed vessel the following equilibrium is established.

 $N_2O_4(g) \rightleftharpoons 2NO_2(g)$ 

The forward reaction is endothermic.

What happens when the temperature is increased?

- 1 The equilibrium constant increases.
- 2 The partial pressure of NO<sub>2</sub> increases.
- **3** The activation energy is unchanged.
- **35** Which types of bonding are present in ammonium carbonate,  $(NH_4)_2CO_3$ ?
  - 1 ionic
  - 2 covalent
  - **3** co-ordinate (dative covalent)
- **36** Sulfur dioxide and sulfites are used in food preservation.

Why are they used for this purpose?

- 1 They are reducing agents which slow down the oxidation of food.
- 2 They inhibit the growth of aerobic bacteria.
- **3** They react with NO<sub>2</sub>(g) converting it to NO(g).
- **37** The organic compound **X** gives a precipitate when warmed with aqueous silver nitrate. This precipitate dissolves when concentrated aqueous ammonia is added.

What is a possible identity for X?

- 1 1-bromopropane
- 2 2-chlorobutane
- **3** 2-iodo,2-methylpropane

**38** An organic compound **Y**, molecular formula  $C_6H_{14}O$ , may be oxidised to compound **Z**, molecular formula  $C_6H_{12}O_2$ .

What could be the structural formula of **Y**?

- 1 CH<sub>3</sub>CH<sub>2</sub>CH(CH<sub>2</sub>OH)CH<sub>2</sub>CH<sub>3</sub>
- **2** (CH<sub>3</sub>)<sub>3</sub>CCH<sub>2</sub>CH<sub>2</sub>OH
- **3** CH<sub>3</sub>CH<sub>2</sub>CH(CH<sub>3</sub>)CH<sub>2</sub>CH<sub>2</sub>OH
- 39 Which reactions can be used to make an alcohol in the laboratory?
  - 1 hydrolysis of a bromoalkane with NaOH(aq)
  - 2 reduction of a ketone with NaBH<sub>4</sub>
  - **3** reduction of an aldehyde with NaBH<sub>4</sub>
- 40 The compounds below are treated with hydrogen cyanide.

Which compounds react and produce a molecule containing a chiral centre?

- 1 butanal
- 2 pentan-3-one
- 3 2-chlorobutane

### **BLANK PAGE**

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.