Centre Number			Candidate Number		
Surname					
Other Names					
Candidate Signature					

General Certificate of Education Advanced Level Examination June 2010

Chemistry

CHM6T/Q10/test

For Teacl	ner's Use
Section	Mark
Task	
Section A	
Section B	
TOTAL ISA Mark	

Unit 6T A2 Investigative Skills Assignment

Written Test

For submission by 15 May 2010

For this paper you must have:

- the Periodic Table/Data Sheet, provided at the end of this paper
- the task sheet and your Candidate Results Sheet
- a ruler with millimetre measurements
- a calculator.

Time allowed

• 1 hour

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 30.
- You will be marked on your ability to:
 - use good English
 - organise information clearly
 - use accurate scientific terminology.

Signature of	Teacher marking the ISA	 Date
Oldilature of	reaction marking the loc	 Date

Section A

These questions are about the task, the investigation of a rust remover.

You should use your Task Sheet and your Candidate Results Sheet to answer them.

Answer all questions in the spaces provided.

1	Record the average titre from your Candidate Results Sheet.
•	
	Average titre/cm ³ (1 mark)
_	· · ·
2	Half-equations for the redox reactions occurring in the reaction between ethanedioic acid and potassium manganate(VII) in acidic solution are shown below.
	$H_2C_2O_4 \rightarrow 2CO_2 + 2H^+ + 2e^-$
	$MnO_4^- + 8H^+ + 5e^- \longrightarrow Mn^{2+} + 4H_2O$
	Deduce an overall equation for the reaction between ethanedioic acid and manganate(VII) ions in acidic solution.
	(1 mark)
3	The concentration of the potassium manganate(VII) used was 0.0200 mol dm ⁻³ . Use your answers from Questions 1 and 2 to calculate the amount, in moles, of ethanedioic acid in 25.0 cm ³ of the rust remover solution. Show your working.
	(2 marks)

3

Do not write outside the box

4	Use your answer from Question 3 to calculate the concentration, in mol dm ⁻³ , of ethanedioic acid in the rust remover solution.
	(1 mark)
5	The rust remover solution was prepared by dissolving 6.00 g of the acid supplied by the manufacturer in water and making up to 1.00 dm ³ of solution. Use your answer from Question 4 to calculate the M_r of the acid. Assume that the solution is made from a pure sample of the acid.
	(1 mark)
6	Use data from the Periodic Table to calculate the $M_{\rm r}$ of ethanedioic acid dihydrate ${\rm H_2C_2O_4.2H_2O}$
	Give your answer to the appropriate precision.
	(1 mark)
7	Can you use your answers from Questions 5 and 6 to identify the form of ethanedioic acid in the rust remover? Explain your answer.
	(1 mark)
	Turn over for the next question

Turn over ▶

8		e burette, the maximum total errors are shown below. int multiple measurements.	These
	pipette burette	$\pm 0.05 \text{ cm}^3$ $\pm 0.15 \text{ cm}^3$	
	hence calculate the m	m percentage error in using these pieces of apparatus, naximum overall percentage error. Use the average titre the percentage error in using the burette. Show you	e from
			(2 marks)
9	Ethanedioic acid is to this hazard.	xic. Suggest one safety precaution you would take to r	
			(1 mark)
10	State why the $M_{\rm r}$ of a compound.	compound may be insufficient on its own to identify the	e
			(1 mark)

Section B

Answer all questions in the spaces provided.

i		4				4.1		
ı	ın	1	rn	~		cti	\sim	n
ı		ш	ıv	u	ч		w	

In **Section A** you determined the M_r of the ethanedioic acid present in a rust remover. Ethanedioic acid is an important industrial chemical with a number of uses.

- 11 Ethanedioate ions, $C_2O_4^{2-}$, act as bidentate ligands with transition metal ions.
- 11 (a) Write an equation for the ligand substitution reaction of an excess of ethanedioate ions with aqueous cobalt(II) ions.

(1 mark)

11 (b) The table below shows some standard electrode potentials.

		E [⊕] /V
Fe ³⁺ (aq) + e ⁻	→ Fe ²⁺ (aq)	+0.77
2CO ₂ (g) + 2e ⁻	\rightarrow C ₂ O ₄ ²⁻ (aq)	-0.49

Use E^{Θ} values from the table to explain why an iron(III) complex is not form solutions containing ethanedioate ions and iron(III) ions are mixed.	ned when
	(2 marks)
	(Z IIIdi No)

Turn over for the next question

12	When a solution containing iron(II) ions is treated with a slight excess of a solution containing ethanedioate ions a bright yellow precipitate of hydrated iron(II) ethanedioate, $FeC_2O_4.2H_2O$, is formed. The precipitate is filtered off, washed with propanone and then allowed to dry. A typical yield of the solid is 95%.
12 (a)	Propanone boils at 56 °C and is miscible with water in all proportions. Suggest two reasons why washing with propanone is an effective method for producing a pure, dry precipitate.
	Reason 1
	Reason 2
	(2 marks)
12 (b)	By suggesting a simple test tube reaction, state how the filtrate could be tested to show that all of the iron(II) ions have been removed from the solution. State what you would observe.
	Test
	Observation(2 marks)
12 (c)	Suggest one reason why the typical yield of iron(II) ethanedioate is less than 100%.
	(1 mark)
12 (d)	Calculate the mass of hydrated iron(II) ethanedioate, $FeC_2O_4.2H_2O$ that can be formed from $50.0\mathrm{cm^3}$ of a $0.50\mathrm{mol}$ dm ⁻³ solution of iron(II) sulfate when the yield of the reaction is 95%. Show your working.
	(3 marks)

Do not write outside the box

12 (e)	The identity of the precipitate can be confirmed by dissolving it in sulfuric acid and titrating the mixture with potassium manganate(VII).
12 (e)	(i) Use the half-equations given in Questions 2 and 11 (b) to deduce an overall equation for the reaction between iron(II) ions and manganate(VII) ions in acidic solution.
	(1 mark)
12 (e)	(ii) Deduce the number of moles of iron(II) ethanedioate that would react with one mole of potassium manganate(VII) in acidic solution.
	(1 mark)
13	Ethanedioate ions can be used to remove calcium ions from blood plasma. A precipitate of calcium ethanedioate is formed. Write an ionic equation for the reaction of ethanedioate ions with calcium ions.
	(1 mark)
14	Ethanedioic acid is used to clean marble, a form of calcium carbonate. Suggest one reason why the reaction between ethanedioic acid and marble stops after a short time.
	(1 mark)
15	Tea leaves contain ethanedioic acid. Suggest one reason why tea drinkers do not suffer from ethanedioic acid poisoning.
	(1 mark)

Do not write outside the box

16	Ethanedioic acid is produced by the oxidation of carbon monoxide in a multi-step process. The equation which summarises the reactions taking place is shown below.	
	$4CO + 4NaOH + O_2 + 4HCI \longrightarrow 2H_2C_2O_4 + 4NaCI + 2H_2O$	
	Calculate the percentage atom economy for the formation of ethanedioic acid in this reaction. Show your working.	
	(2 marks)	
		18
	END OF QUESTIONS	
	END OF QUESTIONS	

GCE Chemistry Data Sheet

¹³C n.m.r. chemical shift data

0.5-5.0 0.7-1.2 1.0-4.5

 RCH_3 RNH_2

ROH

 δ/ppm

Type of proton

¹H n.m.r. chemical shift data

Table 2

1.2 - 1.4 1.4 - 1.6

 $\mathbb{R}_2\mathbf{CH}_2$

 R_3CH

2.1 - 2.6

3.1 - 3.9

R-O-C-

3.1 - 4.2

 RCH_2Cl or Br

3.7 - 4.1

Table 3

Table 1Infrared absorption data

(amines) (amines) O−H 3230-35 (alcohols) 2850-35 O−H 2500-36 (acids) 2220-22 C = N 2220-22 C = O 1680-17 C = C 1620-16	Wavenumber /cm ⁻¹
2850- 2500- 2220- 1680- 1620-	
2500 – 2220 – 1680 – 1620 –	2850-3300
2220 – 1680 – 1620 –	2500-3000
= 0 $1680 = C$ $1620 -$	2220-2260
C = C $1620 - 16$	1680 - 1750
	1620 - 1680
C - O = 1000 - 13	1000 - 1300
C - C 750-11	750-1100

ACA

10.0 - 12.0

9.0 - 10.0

Type of carbon	δ/ppm
	5-40
$R-\stackrel{ }{C}-CI$ or Br	10 – 70
$\begin{matrix} \mathbf{R} - \mathbf{C} - \mathbf{C} \\ - \mathbf{C} - \mathbf{C} \end{matrix}$	20-50
$\begin{array}{c} \mathbf{R} - \mathbf{C} \\ - \mathbf{N} \end{array}$	25-60
alcohols, -C-O- ethers or esters	50-90
C=C	90-150
$R\!-\!C \equiv \! N$	110-125
	110-160
R-C- esters or acids	160-185
R-C- aldehydes or ketones 0	190 – 220

The Periodic Table of the Elements

0	(18) 4.0 He helium 2	20.2 Ne	neon 10	39.9 Ar	argon 18	83.8 Kr	krypton 36	131.3 Xe	xenon 54	[222] Rn	radon 86	l but	
7	(17)	19.0 F	fluorine 9	35.5 C	chlorine 17	79.9 Br	bromine 35	126.9 	iodine 53	[210] At	astatine 85	en reportec	
9	(16)	16.0 O	oxygen 8	32.1 S	sulfur 16	79.0 Se	selenium 34	127.6 Te	tellurium 52	[209] Po	polonium 84	6 have bee	ated
2	(15)	14.0 N	nitrogen 7	31.0	phosphorus 15	74.9 As	arsenic 33	121.8 Sb	antimony 51	209.0 Bi	bismuth 83	oers 112-11	not fully authenticated
4	(14)	12.0 C	carbon 6		silicon 14		Ε		tin 50	207.2 Pb	lead 82	Elements with atomic numbers 112-116 have been reported but	not fu
က	(13)	10.8 B	boron 5	27.0 Al	aluminium 13	69.7 Ga	gallium 31	114.8 In	indium 49	204.4 Ti	thallium 81	nents with a	
					(12)	65.4 Zn	zinc 30	112.4 Cd	cadmium 48	200.6 Hg	mercury 80	Elen	
					(11)	63.5 Cu	copper 29	107.9 Ag		197.0 Au	plog 79	[280] Rg	roentgenium 111
					(10)	58.7 Ni	nickel 28	106.4 Pd	palladium 46	195.1 Pt	platinum 78	[281] Ds	darmstadtium 110
					(6)	58.9 Co	cobalt 27		rhodium 45	192.2 Ir	iridium 77	[276] Mt	meitnerium 109
	1.0 T hydrogen 1				(8)	55.8 Fe	iron 26	101.1 Ru	ruthenium 44	190.2 Os	osmium 76	[270] Hs	hassium 108
				ı	(/	54.9 Mn	Па	[98] Tc	technetium 43	186.2 Re	rhenium 75	[272] Bh	bohrium 107
		mass	umber		(9)	52.0 Cr	F		molybdenum 42	183.8 W	tungsten 74	[271] Sg	seaborgium 106
	Key	relative atomic mass symbol	name atomic (proton) number		(2)	50.9 V	vanadium 23						
		relat	atomi		(4)	47.9 Ti	titanium 22	91.2 Zr	zirconium 40	178.5 Hf	hafnium 72	[267] Rf	rutherfordium 104
	'				(3)	45.0 Sc	scandium 21	88.9	yttrium 39	138.9 La *	lanthanum 57	[227] Ac †	actinium 89
7	(2)	9.0 Be	beryllium 4	24.3 M	magnesium 12	40.1 Ca	calcium 20	87.6 Sr	strontium 38	137.3 Ba	barium 56	[226] Ra	radium 88
-	(1)	6.9 L	lithium 3	23.0 Na	sodium 11	39.1	potassium 19	85.5 Rb	rubidium 37	132.9 Cs	caesium 55	[223] Fr	francium 87
	'												

:	140.1	140.9	144.2	[145]	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.1	175.0
:	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
58 - /1 Lantnanides		praseodymium 59	neodymium 60	promethium 61	samarium 62	europium 63	gadolinium 64	terbium 65	dysprosium 66	holmium 67	erbium 68	thulium 69	ytterbium 70	lutetium 71
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	232.0	231.0	238.0	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]	[262]
	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
. 90 - 103 Actinides	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium	lawrencium
	90	91	92	93	94	95	96	97	98	99	100	101	102	103