| Centre Number | | | Candidate Number | | | |---------------------|--|--|------------------|--|--| | Surname | | | | | | | Other Names | | | | | | | Candidate Signature | | | | | | General Certificate of Education Advanced Level Examination June 2010 # Chemistry ## CHM6T/Q10/test | For Teacl | ner's Use | |-------------------|-----------| | Section | Mark | | Task | | | Section A | | | Section B | | | TOTAL
ISA Mark | | ### Unit 6T A2 Investigative Skills Assignment ### **Written Test** ### For submission by 15 May 2010 ### For this paper you must have: - the Periodic Table/Data Sheet, provided at the end of this paper - the task sheet and your Candidate Results Sheet - a ruler with millimetre measurements - a calculator. ### Time allowed • 1 hour ### Instructions - Use black ink or black ball-point pen. - Fill in the boxes at the top of this page. - Answer all questions. - You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages. - Do all rough work in this book. Cross through any work you do not want to be marked. ### Information - The marks for questions are shown in brackets. - The maximum mark for this paper is 30. - You will be marked on your ability to: - use good English - organise information clearly - use accurate scientific terminology. | Signature of | Teacher marking the ISA |
Date | |---------------|--------------------------|----------| | Oldilature of | reaction marking the loc |
Date | ### Section A These questions are about the task, the investigation of a rust remover. You should use your Task Sheet and your Candidate Results Sheet to answer them. Answer all questions in the spaces provided. | 1 | Record the average titre from your Candidate Results Sheet. | |---|--| | • | | | | Average titre/cm ³ (1 mark) | | _ | · · · | | 2 | Half-equations for the redox reactions occurring in the reaction between ethanedioic acid and potassium manganate(VII) in acidic solution are shown below. | | | $H_2C_2O_4 \rightarrow 2CO_2 + 2H^+ + 2e^-$ | | | $MnO_4^- + 8H^+ + 5e^- \longrightarrow Mn^{2+} + 4H_2O$ | | | Deduce an overall equation for the reaction between ethanedioic acid and manganate(VII) ions in acidic solution. | | | | | | | | | | | | (1 mark) | | 3 | The concentration of the potassium manganate(VII) used was 0.0200 mol dm ⁻³ . Use your answers from Questions 1 and 2 to calculate the amount, in moles, of ethanedioic acid in 25.0 cm ³ of the rust remover solution. Show your working. | | | | | | | | | | | | | | | (2 marks) | | | | | | | | | | 3 Do not write outside the box | 4 | Use your answer from Question 3 to calculate the concentration, in mol dm ⁻³ , of ethanedioic acid in the rust remover solution. | |---|---| | | | | | (1 mark) | | 5 | The rust remover solution was prepared by dissolving 6.00 g of the acid supplied by the manufacturer in water and making up to 1.00 dm ³ of solution. Use your answer from Question 4 to calculate the M_r of the acid. Assume that the solution is made from a pure sample of the acid. | | | | | | (1 mark) | | 6 | Use data from the Periodic Table to calculate the $M_{\rm r}$ of ethanedioic acid dihydrate ${\rm H_2C_2O_4.2H_2O}$ | | | Give your answer to the appropriate precision. | | | (1 mark) | | 7 | Can you use your answers from Questions 5 and 6 to identify the form of ethanedioic acid in the rust remover? Explain your answer. | | | | | | | | | (1 mark) | | | | | | | | | Turn over for the next question | | | | | | | | | | | | | Turn over ▶ | 8 | | e burette, the maximum total errors are shown below. int multiple measurements. | These | |----|--|--|-----------| | | pipette
burette | $\pm 0.05 \text{ cm}^3$
$\pm 0.15 \text{ cm}^3$ | | | | hence calculate the m | m percentage error in using these pieces of apparatus, naximum overall percentage error. Use the average titre the percentage error in using the burette. Show you | e from | | | | | | | | | | | | | | | (2 marks) | | 9 | Ethanedioic acid is to this hazard. | xic. Suggest one safety precaution you would take to r | | | | | | (1 mark) | | 10 | State why the $M_{\rm r}$ of a compound. | compound may be insufficient on its own to identify the | e | | | | | (1 mark) | ### Section B Answer all questions in the spaces provided. | i | | 4 | | | | 4.1 | | | |---|----|---|----|---|---|-----|--------|---| | ı | ın | 1 | rn | ~ | | cti | \sim | n | | ı | | ш | ıv | u | ч | | w | | In **Section A** you determined the M_r of the ethanedioic acid present in a rust remover. Ethanedioic acid is an important industrial chemical with a number of uses. - 11 Ethanedioate ions, $C_2O_4^{2-}$, act as bidentate ligands with transition metal ions. - 11 (a) Write an equation for the ligand substitution reaction of an excess of ethanedioate ions with aqueous cobalt(II) ions. (1 mark) **11 (b)** The table below shows some standard electrode potentials. | | | E [⊕] /V | |--|--|-------------------| | Fe ³⁺ (aq) + e ⁻ | → Fe ²⁺ (aq) | +0.77 | | 2CO ₂ (g) + 2e ⁻ | \rightarrow C ₂ O ₄ ²⁻ (aq) | -0.49 | | Use E^{Θ} values from the table to explain why an iron(III) complex is not form solutions containing ethanedioate ions and iron(III) ions are mixed. | ned when | |--|--------------| (2 marks) | | | (Z IIIdi No) | Turn over for the next question | 12 | When a solution containing iron(II) ions is treated with a slight excess of a solution containing ethanedioate ions a bright yellow precipitate of hydrated iron(II) ethanedioate, $FeC_2O_4.2H_2O$, is formed. The precipitate is filtered off, washed with propanone and then allowed to dry. A typical yield of the solid is 95%. | |--------|---| | 12 (a) | Propanone boils at 56 °C and is miscible with water in all proportions. Suggest two reasons why washing with propanone is an effective method for producing a pure, dry precipitate. | | | Reason 1 | | | Reason 2 | | | (2 marks) | | 12 (b) | By suggesting a simple test tube reaction, state how the filtrate could be tested to show that all of the iron(II) ions have been removed from the solution. State what you would observe. | | | Test | | | Observation(2 marks) | | 12 (c) | Suggest one reason why the typical yield of iron(II) ethanedioate is less than 100%. | | | | | | (1 mark) | | 12 (d) | Calculate the mass of hydrated iron(II) ethanedioate, $FeC_2O_4.2H_2O$ that can be formed from $50.0\mathrm{cm^3}$ of a $0.50\mathrm{mol}$ dm ⁻³ solution of iron(II) sulfate when the yield of the reaction is 95%. Show your working. | | | | | | | | | | | | | | | (3 marks) | | | | | | | Do not write outside the box | 12 (e) | The identity of the precipitate can be confirmed by dissolving it in sulfuric acid and titrating the mixture with potassium manganate(VII). | |--------|---| | 12 (e) | (i) Use the half-equations given in Questions 2 and 11 (b) to deduce an overall equation for the reaction between iron(II) ions and manganate(VII) ions in acidic solution. | | | | | | (1 mark) | | 12 (e) | (ii) Deduce the number of moles of iron(II) ethanedioate that would react with one mole of potassium manganate(VII) in acidic solution. | | | | | | (1 mark) | | 13 | Ethanedioate ions can be used to remove calcium ions from blood plasma. A precipitate of calcium ethanedioate is formed. Write an ionic equation for the reaction of ethanedioate ions with calcium ions. | | | (1 mark) | | 14 | Ethanedioic acid is used to clean marble, a form of calcium carbonate. Suggest one reason why the reaction between ethanedioic acid and marble stops after a short time. | | | (1 mark) | | 15 | Tea leaves contain ethanedioic acid. Suggest one reason why tea drinkers do not suffer from ethanedioic acid poisoning. | | | (1 mark) | | | | | | | | | | Do not write outside the box | 16 | Ethanedioic acid is produced by the oxidation of carbon monoxide in a multi-step process. The equation which summarises the reactions taking place is shown below. | | |----|--|----| | | $4CO + 4NaOH + O_2 + 4HCI \longrightarrow 2H_2C_2O_4 + 4NaCI + 2H_2O$ | | | | Calculate the percentage atom economy for the formation of ethanedioic acid in this reaction. Show your working. | | | | | | | | | | | | (2 marks) | | | | | 18 | | | END OF QUESTIONS | | | | END OF QUESTIONS | # GCE Chemistry Data Sheet ¹³C n.m.r. chemical shift data 0.5-5.0 0.7-1.2 1.0-4.5 RCH_3 RNH_2 ROH δ/ppm Type of proton ¹H n.m.r. chemical shift data Table 2 1.2 - 1.4 1.4 - 1.6 $\mathbb{R}_2\mathbf{CH}_2$ R_3CH 2.1 - 2.6 3.1 - 3.9 R-O-C- 3.1 - 4.2 RCH_2Cl or Br 3.7 - 4.1 Table 3 Table 1Infrared absorption data | (amines) (amines) O−H 3230-35 (alcohols) 2850-35 O−H 2500-36 (acids) 2220-22 C = N 2220-22 C = O 1680-17 C = C 1620-16 | Wavenumber /cm ⁻¹ | |--|------------------------------| | 2850-
2500-
2220-
1680-
1620- | | | 2500 –
2220 –
1680 –
1620 – | 2850-3300 | | 2220 –
1680 –
1620 – | 2500-3000 | | = 0 $1680 = C$ $1620 -$ | 2220-2260 | | C = C $1620 - 16$ | 1680 - 1750 | | | 1620 - 1680 | | C - O = 1000 - 13 | 1000 - 1300 | | C - C 750-11 | 750-1100 | ACA 10.0 - 12.0 9.0 - 10.0 | Type of carbon | δ/ppm | |---|-----------| | | 5-40 | | $R-\stackrel{ }{C}-CI$ or Br | 10 – 70 | | $\begin{matrix} \mathbf{R} - \mathbf{C} - \mathbf{C} \\ - \mathbf{C} - \mathbf{C} \end{matrix}$ | 20-50 | | $\begin{array}{c} \mathbf{R} - \mathbf{C} \\ - \mathbf{N} \end{array}$ | 25-60 | | alcohols,
 -C-O- ethers or
 esters | 50-90 | | C=C | 90-150 | | $R\!-\!C \equiv \! N$ | 110-125 | | | 110-160 | | R-C- esters or acids | 160-185 | | R-C- aldehydes
 or ketones
 0 | 190 – 220 | # The Periodic Table of the Elements | 0 | (18)
4.0
He
helium
2 | 20.2
Ne | neon
10 | 39.9
Ar | argon
18 | 83.8
Kr | krypton
36 | 131.3
Xe | xenon
54 | [222]
Rn | radon
86 | l but | | |---|---|------------------------------------|--------------------------------|-------------------|------------------|-------------------|-----------------|--------------------|------------------|----------------------|-----------------|---|-------------------------| | 7 | (17) | 19.0
F | fluorine
9 | 35.5
C | chlorine
17 | 79.9
Br | bromine
35 | 126.9
 | iodine
53 | [210]
At | astatine
85 | en reportec | | | 9 | (16) | 16.0
O | oxygen
8 | 32.1
S | sulfur
16 | 79.0
Se | selenium
34 | 127.6
Te | tellurium
52 | [209]
Po | polonium
84 | 6 have bee | ated | | 2 | (15) | 14.0
N | nitrogen
7 | 31.0 | phosphorus
15 | 74.9
As | arsenic
33 | 121.8
Sb | antimony
51 | 209.0
Bi | bismuth
83 | oers 112-11 | not fully authenticated | | 4 | (14) | 12.0
C | carbon
6 | | silicon
14 | | Ε | | tin
50 | 207.2
Pb | lead
82 | Elements with atomic numbers 112-116 have been reported but | not fu | | က | (13) | 10.8
B | boron
5 | 27.0
Al | aluminium
13 | 69.7
Ga | gallium
31 | 114.8
In | indium
49 | 204.4
Ti | thallium
81 | nents with a | | | | | | | | (12) | 65.4
Zn | zinc
30 | 112.4
Cd | cadmium
48 | 200.6
Hg | mercury
80 | Elen | | | | | | | | (11) | 63.5
Cu | copper
29 | 107.9
Ag | | 197.0
Au | plog
79 | [280]
Rg | roentgenium
111 | | | | | | | (10) | 58.7
Ni | nickel
28 | 106.4 Pd | palladium
46 | 195.1
Pt | platinum
78 | [281]
Ds | darmstadtium
110 | | | | | | | (6) | 58.9
Co | cobalt
27 | | rhodium
45 | 192.2
Ir | iridium
77 | [276]
Mt | meitnerium
109 | | | 1.0
T
hydrogen
1 | | | | (8) | 55.8
Fe | iron
26 | 101.1
Ru | ruthenium
44 | 190.2
Os | osmium
76 | [270]
Hs | hassium
108 | | | | | | ı | (/ | 54.9
Mn | Па | [98]
Tc | technetium
43 | 186.2
Re | rhenium
75 | [272]
Bh | bohrium
107 | | | | mass | umber | | (9) | 52.0
Cr | F | | molybdenum
42 | 183.8
W | tungsten
74 | [271]
Sg | seaborgium
106 | | | Key | relative atomic mass symbol | name
atomic (proton) number | | (2) | 50.9
V | vanadium
23 | | | | | | | | | | relat | atomi | | (4) | 47.9
Ti | titanium
22 | 91.2
Zr | zirconium
40 | 178.5
Hf | hafnium
72 | [267]
Rf | rutherfordium
104 | | | ' | | | | (3) | 45.0
Sc | scandium
21 | 88.9 | yttrium
39 | 138.9
La * | lanthanum
57 | [227]
Ac † | actinium
89 | | 7 | (2) | 9.0
Be | beryllium
4 | 24.3
M | magnesium
12 | 40.1
Ca | calcium
20 | 87.6
Sr | strontium
38 | 137.3
Ba | barium
56 | [226]
Ra | radium
88 | | - | (1) | 6.9
L | lithium
3 | 23.0
Na | sodium
11 | 39.1 | potassium
19 | 85.5
Rb | rubidium
37 | 132.9
Cs | caesium
55 | [223]
Fr | francium
87 | | | ' | | | | | | | | | | | | | | : | 140.1 | 140.9 | 144.2 | [145] | 150.4 | 152.0 | 157.3 | 158.9 | 162.5 | 164.9 | 167.3 | 168.9 | 173.1 | 175.0 | |---|-----------|--------------------|-----------------|------------------|----------------|----------------|------------------|---------------|------------------|---------------|--------------|---------------|-----------------|----------------| | : | Ce | Pr | Nd | Pm | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | | 58 - /1 Lantnanides | | praseodymium
59 | neodymium
60 | promethium
61 | samarium
62 | europium
63 | gadolinium
64 | terbium
65 | dysprosium
66 | holmium
67 | erbium
68 | thulium
69 | ytterbium
70 | lutetium
71 | | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 232.0 | 231.0 | 238.0 | [237] | [244] | [243] | [247] | [247] | [251] | [252] | [257] | [258] | [259] | [262] | | | Th | Pa | U | Np | Pu | Am | Cm | Bk | Cf | Es | Fm | Md | No | Lr | | . 90 - 103 Actinides | thorium | protactinium | uranium | neptunium | plutonium | americium | curium | berkelium | californium | einsteinium | fermium | mendelevium | nobelium | lawrencium | | | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 |