Centre Number			Candidate Number		
Surname					
Other Names					
Candidate Signature					

General Certificate of Education Advanced Subsidiary Examination January 2010

Chemistry

CHEM2

Unit 2 Chemistry in Action

Thursday 21 January 2010 1.30 pm to 3.15 pm

For this paper you must have:

- the Periodic Table/Data Sheet provided as an insert (enclosed)
- a calculator.

Time allowed

• 1 hour 45 minutes

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Answers written in margins or on blank pages will not be marked.
- All working must be shown.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 100.
- The Periodic Table/Data Sheet is provided as an insert.
- Your answers to the questions in Section B should be written in continuous prose, where appropriate.
- You will be marked on your ability to:
 - use good English
 - organise information clearly
 - use accurate scientific terminology.

Advice

 You are advised to spend about 1 hour 15 minutes on Section A and about 30 minutes on Section B.

For Examiner's Use							
Examiner's Initials							
Question	Mark						
1							
2							
3							
4							
5							
6							
7							
8							
9							
10							
TOTAL							

SECTION A

Answer all questions in the spaces provided.

1	Hydı	ogen	gas is used in the chemical industry.							
1	1 (a) Tungsten is extracted by passing hydrogen over heated tungsten oxide (WO ₃).									
1	(a)	(i)	State the role of the hydrogen in this reaction.							
1	(a)	(ii)	(1 mark) Write an equation for this reaction.	.)						
1	(a)	(iii)	(1 mark) State one risk of using hydrogen gas in metal extractions.							
			(1 mark)							
1	(b)	Hyd:	rogen is used to convert oleic acid into stearic acid as shown by the following tion.							
Cl	H ₃ (CH	I ₂) ₆ CI	H $C = C$ H $C = C$ $CH_2(CH_2)_6COOH$ H_2 H_2 $H_3(CH_2)_{16}COOH$ $H_3(CH_2)_{16}COOH$							
			oleic acid stearic acid							
1	(b)	(i)	Use your knowledge of the chemistry of alkenes to deduce the type of reaction that has occurred in this conversion.							
			(1 mark)							
1	(b)	(ii)	State the type of stereoisomerism shown by oleic acid.							
			(1 mark))						

1	(c)	Hydrogen reacts with nitrogen in the Haber Process. The equation for the equilibrium that is established is shown below.							
			$N_2(g) + 3H_2(g)$	2NH ₃ (g)					
1	(c)	(i)	State Le Chatelier's principle.						
						(1 mark)			
1	(c)	(ii)	Use Le Chatelier's principle to explain this equilibrium results in an increase in	•		-			
						(2 marks)			
1	(d)	Hydr equa	rogen reacts with oxygen in an exotherm tion.	ic reaction as	s shown by th	ne following			
			$H_2(g) + \frac{1}{2}O_2(g) \longrightarrow H_2O(g)$	$\Delta H = -2$	242 kJ mol ⁻¹				
			the information in the equation and the defor the bond enthalpy of the H–H bond		lowing table	to calculate a			
				О-Н	O=O				
			Mean bond enthalpy/kJ mol ⁻¹	+463	+496				
		•••••							
		•••••		••••••	•••••••				
		•••••		••••••	••••••				
		(Fytr	ra space)	••••••	•••••	(3 marks)			
		LAII	a space,	••••••	•••••••••••				
		•••••		••••••	•••••••••••				

2	Hess's Law is used to calculate the enthalpy change in reactions for which it is difficult to
	determine a value experimentally.

2 (a) State the meaning of the term <i>enthalpy cha</i>	ınge.
--	-------

	(1 mark

2 (h`) State	Hess	, c	Law
<i>-</i>	Ų,	, sian	<i>-</i> 11033	o	Law.

(1 mark)

2 (c) Consider the following table of data and the scheme of reactions.

Reaction	Enthalpy change/kJ mol ⁻¹
$HCl(g) \longrightarrow H^{+}(aq) + Cl^{-}(aq)$	–75
$H(g) + Cl(g) \longrightarrow HCl(g)$	-432
$H(g) + Cl(g) \longrightarrow H^{+}(g) + Cl^{-}(g)$	+963

$$H^{+}(g)$$
 + $Cl^{-}(g)$ $\xrightarrow{\Delta H_{\Gamma}}$ $H^{+}(aq)$ + $Cl^{-}(aq)$

$$\uparrow \qquad \qquad \uparrow$$

$$H(g)$$
 + $Cl(g)$ \longrightarrow $HCl(g)$

Use the data in the table, the scheme of reactions and Hess's Law to calculate a value for $\Delta H_{\rm r}$

•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••
	•••••			
	• • • • • • • • • • • • • • • • • • • •			

5

(3 marks)

3	3 For each of the following reactions, select from the list below, the formula of a sodium halide that would react as described.									
			NaF	NaCl	NaBr	NaI				
	Each	formula ma	y be selected	once, more th	an once or not	at all.				
3	(a)	This sodium brown gas.	halide is a w	hite solid that	reacts with co	encentrated sulfuric	acid to give a			
		Formula of s	sodium halide							
							(1 mark)			
3	(b)	When a solu precipitate is		odium halide i	s mixed with s	silver nitrate solutio	on, no			
		Formula of s	sodium halide	·						
							(1 mark)			
3	(c)				ith concentrate es are given of	ed sulfuric acid, the f.	reaction			
		Formula of s	sodium halide	<u> </u>	•••••					
							(1 mark)			
3	(d)		s aqueous solu k brown solu		odium halide re	eacts with orange b	promine water			
		Formula of s	sodium halide	·						
							(1 mark)			

Turn over for the next question

4		up 2 metals and their compounds are used commercially in a variety of processes and ications.		
4	(a)	State a use of magnesium hydroxide in medicine.		
		(1 mark)		
4	(b)	Calcium carbonate is an insoluble solid that can be used in a reaction to lower the acidity of the water in a lake.		
		Explain why the rate of this reaction decreases when the temperature of the water in the lake falls.		
		(3 marks) (Extra space)		
4	(c)	Strontium metal is used in the manufacture of alloys.		
4	(c)	(i) Explain why strontium has a higher melting point than barium.		
		(2 marks) (Extra space)		

4	(c)	(ii)	Write an equation for the reaction of strontium with water.
			(1 mark)
4	(d)	Mag	nesium can be used in the extraction of titanium.
4	(d)	(i)	Write an equation for the reaction of magnesium with titanium(IV) chloride.
			(1 mark)
4	(d)	(ii)	The excess of magnesium used in this extraction can be removed by reacting it with dilute sulfuric acid to form magnesium sulfate.
			Use your knowledge of Group 2 sulfates to explain why the magnesium sulfate formed is easy to separate from the titanium.
			(1 mark)

Turn over for the next question

the box will not be scanned for marking

- 5 Nitric acid is manufactured from ammonia in a process that involves several stages.
- 5 In the first stage, ammonia is converted into nitrogen monoxide and the following equilibrium is established.

$$4NH_3(g) + 5O_2(g) \implies 4NO(g) + 6H_2O(g) \qquad \Delta H = -905 \text{ kJ mol}^{-1}$$

The catalyst for this equilibrium reaction is a platinum-rhodium alloy in the form of a gauze. This catalyst gauze is heated initially but then remains hot during the reaction.

5 In terms of redox, state what happens to the ammonia in the forward reaction. (a)

(1 mark)

5 (ii) Suggest a reason why the catalyst must be hot.

		(1 mark)

(a) (iii) Suggest a reason why the catalyst remains hot during the reaction.

(1 mark)

(1 mark)

(a) (iv) State how a catalyst increases the rate of a reaction.

•••••	• • • • • • • • • • • • • • • • • • • •	•••••

(2 marks)

5	(b)	In the second stage, nitrogen monoxide is converted into nitrogen dioxide. The equation for the equilibrium that is established is shown below.		
		$2NO(g) + O_2(g) \implies 2NO_2(g) \qquad \Delta H = -113 \text{ kJ mol}^{-1}$		
		Explain why the equilibrium mixture is cooled during this stage of the process.		
		(2 marks)		
5	(c)	In the final stage, nitragen dievide recets with water as shown by the following		
		In the final stage, nitrogen dioxide reacts with water as shown by the following equation.		
		·		
		equation.		
		equation. $2NO_2(g) + H_2O(l) \longrightarrow H^+(aq) + NO_3^-(aq) + HNO_2(aq)$		
		equation. $2NO_2(g) + H_2O(l) \longrightarrow H^+(aq) + NO_3^-(aq) + HNO_2(aq)$ Give the oxidation state of nitrogen in each of the following.		

Turn over for the next question

Turn over ▶

(3 marks)

10

6 Consider the following scheme of reactions.

6 (a) State the type of structural isomerism shown by propanal and propanone.

.....(1 mark)

6 (b) A chemical test can be used to distinguish between separate samples of propanal and propanone.

Identify a suitable reagent for the test. State what you would observe with propanal and with propanone.

Test reagent

Observation with propanal

6 (c) State the structural feature of propanal and propanone which can be identified from their infrared spectra by absorptions at approximately 1720 cm⁻¹.
 You may find it helpful to refer to Table 1 on the Data Sheet.

.....(1 mark)

6	(d)	The reaction of chlorine with propane is similar to the reaction of chlorine with methane.		llorine with	
6	(d)	(i)	Name the type of mechanism	in the reaction of chlorine with r	nethane.
					(1 mark)
6	(d)	(ii)	-	the following steps in the mecha ane to form l-chloropropane (CH	
			Initiation step		
			First propagation step		
			Second propagation step		
				molecule with the empirical form	ula C ₃ H ₇
6	(e)	Hioh	resolution mass spectrometry (of a sample of propane indicated	(4 marks)
v	(0)		aminated with traces of carbon		tille it was
			the data in the table to show ho ble contains both of these gases.	w precise $M_{\rm r}$ values can be used.	to prove that the
			Atom	Precise relative atomic mass	
			¹² C	12.00000	
			¹ H	1.00794	
			¹⁶ O	15.99491	
		•••••			
					(2 marks)

Turn over ▶

12

7 (a) Consider the following reaction.

7 (a) (i) Name and outline a mechanism for this reaction.

Name of mechanism

Mechanism

(3 marks)

7 (a) (ii) Name the haloalkane in this reaction.

(1 mark)

(1 mark)

7 (a) (iii) Identify the characteristic of the haloalkane molecule that enables it to undergo this type of reaction.

(1 mark)

(1 mark)

7 An alternative reaction can occur between this haloalkane and potassium hydroxide as shown by the following equation.

Name and outline a mechanism for this reaction.

Name of mechanism

Mechanism

(4 marks)

(c) Give **one** condition needed to favour the reaction shown in part (b) rather than that shown in part (a).

(1 mark)

- Alkenes can be polymerised to produce poly(alkenes).
- (d) (i) State the type of polymerisation that alkenes undergo.

(1 mark)

(ii) Name the alkene that gives a polymer with the repeating unit shown below.

Name of alkene (1 *mark*)

8	Copper is extracted from the ore chalcopyrite (CuFeS ₂) in a three-stage process.			
8	(a)	In th	ne first stage of this extraction, the chalcopyrite is heated with silicon diox gen.	aide and
8	(a)	(i)	Balance the following equation for this first stage in which copper(I) sufformed.	lfide is
	••••	CuF	$\text{FeS}_2 + \dots \text{SiO}_2 + \dots \text{O}_2 \longrightarrow \text{Cu}_2\text{S} + \dots \text{FeSiO}_3 + \dots \text{SiO}_2$	O ₂ (1 mark)
8	(a)	(ii)	Give one environmental reason why the SO ₂ gas formed in this reaction allowed to escape into the atmosphere.	
8	(a)	(iii)	State one use for the sulfur dioxide formed in this reaction.	
8	(b)	copp	ne second stage of this extraction, the copper(I) sulfide is converted into per(II) oxide. This occurs by roasting the sulfide with oxygen at high tem te an equation for this reaction.	perature.
				(1 mark)
8	(c)		ne third stage of this extraction, copper(II) oxide is reduced to copper by it tion with carbon. Write an equation for this reaction.	ts
				(1 mark)

8	(d)		p iron can be used to extract copper from dilute aqueous solutions containing per(II) ions.
8	(d)	(i)	Explain why this is a low-cost method of extracting copper.
			(1 mark)
8	(d)	(ii)	Write the simplest ionic equation for the reaction of iron with copper(II) ions in aqueous solution.
			(1 mark)
			Turn over for the next question

SECTION B

Answer all questions in the spaces provided.

- **9** There are **four** isomeric alcohols with the molecular formula $C_4H_{10}O$
- 9 (a) Two of these are butan-l-ol ($CH_3CH_2CH_2CH_2OH$) and butan-2-ol. The other two isomers are alcohol ${\bf X}$ and alcohol ${\bf Y}$.

Draw the displayed formula for butan-2-ol.

Alcohol X does not react with acidified potassium dichromate(VI) solution. Give the structure of alcohol X.

Name the fourth isomer, alcohol Y.

(Extra space)	(3 marks)

9 (b) The infrared spectrum of one of these isomeric alcohols is given below.

Identify **one** feature of the infrared spectrum which supports the fact that this is an alcohol. You may find it helpful to refer to **Table 1** on the Data Sheet.

Explain how infrared spectroscopy can be used to identify this isomeric alcohol.
(3 marks)
(Extra space)

Question 9 continues on the next page

(c)	British scientists have used bacteria to ferment glucose and produce the biofuel butan-l-ol.
	Write an equation for the fermentation of glucose ($C_6H_{12}O_6$) to form butan-l-ol, carbon dioxide and water only.
	State one condition necessary to ensure the complete combustion of a fuel in air.
	Write an equation for the complete combustion of butan-1-ol and state why it can be described as a <i>biofuel</i> .
	(4 marks)
	(Extra space)

9 (d)	Butan-l-ol reacts with acidified potassium dichromate(VI) solution to produce two organic compounds.
	State the class of alcohols to which butan-l-ol belongs.
	Draw the displayed formula for both of the organic products.
	State the type of reaction that occurs and the change in colour of the potassium dichromate(VI) solution.
	(5 marks)
	(Extra space)
	Turn over for the next question

Turn over ▶

15

10	(a)	When chlorine gas dissolves in cold water, a pale green solution is formed. In this solution, the following equilibrium is established.
		$Cl_2(g) + H_2O(l) \Longrightarrow H^+(aq) + Cl^-(aq) + HClO(aq)$
		Give the formula of the species responsible for the pale green colour in the solution of chlorine in water.
		Use Le Chatelier's principle to explain why the green colour disappears when sodium hydroxide solution is added to this solution.
		(3 marks)
		(Extra space)

10	(b)	Consider the following reaction in which iodide ions behave as reducing agents.
		$Cl_2(aq) + 2I^-(aq) \longrightarrow I_2(aq) + 2Cl^-(aq)$
		In terms of electrons, state the meaning of the term reducing agent.
		Deduce the half-equation for the conversion of chlorine into chloride ions.
		Explain why iodide ions are stronger reducing agents than chloride ions.
		(4 marks)
		(Extra space)

Question 10 continues on the next page

10	(c)	When chlorine reacts with water in bright sunlight, only two products are formed. One of these products is a colourless, odourless gas and the other is an acidic solution that reacts with silver nitrate solution to give a white precipitate.
		Write an equation for the reaction of chlorine with water in bright sunlight.
		Name the white precipitate and state what you would observe when an excess of aqueous ammonia is added to it.
		(3 marks)
		(Extra space)

10 (d) The reaction of chlorine with ethene is similar to that of bromine with ethene.

Name and outline a mechanism for the reaction of chlorine with ethene to form 1,2-dichloroethane, as shown by the following equation.

$$H_2C = CH_2 + Cl_2 \longrightarrow ClCH_2CH_2Cl$$

(5 marks)

15

END OF QUESTIONS

