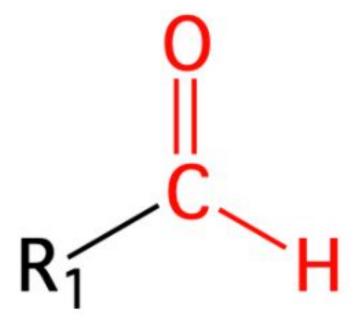


WJEC (Eduqas) Chemistry A-level

SP OA2.2 - Identification of Aldehydes/Ketones by their Reaction with 2,4-Dinitrophenylhydrazine

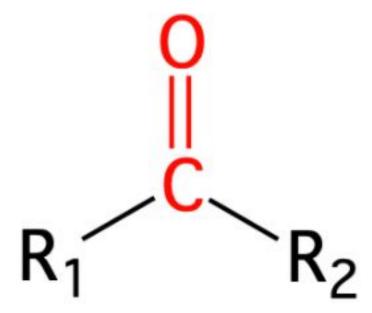
This work by PMT Education is licensed under CC BY-NC-ND 4.0

What is the functional group of an aldehyde?



What is the functional group of an aldehyde?

What is the functional group of a ketone?



What is the functional group of a ketone?

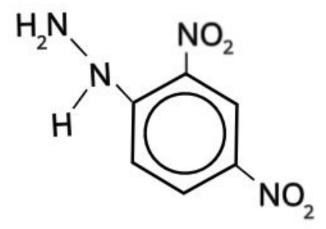
What reagent can be used to identify aldehydes and ketones?

What reagent can be used to identify aldehydes and ketones?

2,4-dinitrophenylhydrazine

(2,4-DNPH)

Give the structural formula for 2,4-dinitrophenylhydrazine (2,4-DNPH)



Give the structural formula for 2,4-dinitrophenylhydrazine (2,4-DNPH)

What type of reaction takes place when an aldehyde or ketone reacts with 2,4-DNPH?

What type of reaction takes place when an aldehyde or ketone reacts with 2,4-DNPH?

Addition-elimination reaction (condensation)

What is the positive test result when 2,4-DNPH reacts with an aldehyde or ketone?

What is the positive test result when 2,4-DNPH reacts with an aldehyde or ketone?

An orange/yellow precipitate is produced.

How can 2,4-DNPH be used to identify specific aldehydes and ketones?

How can 2,4-DNPH be used to identify specific aldehydes and ketones?

Add 2,4-DNP so that a precipitate forms. Purify the solid by recrystallisation. Compare the melting point of the pure crystals formed with the melting points of 2,4-dinitrophenylhydrazones of all the common aldehydes and ketones.

What apparatus is required to identify specific aldehydes and ketones?

What apparatus is required to identify specific aldehydes and ketones?

- Dropping pipettes
- Spatulas
- Boiling tubes
- Test-tube rack
- 100 cm³ beaker
- 250 cm³ beaker
- 10 cm³ measuring cylinder

- 100 cm³ conical flask
- Hot water bath
- Buchner funnel
- Filter paper
- Melting point apparatus
- Capillary tube

Outline the experimental procedure to identify specific aldehydes and ketones using 2,4-DNPH

Outline the experimental procedure to identify specific aldehydes and ketones using 2,4-DNPH

- 1. Add 1 cm depth of unknown aldehyde/ketone to a boiling tube.
- 2. Add 8 cm³ of 2,4-DNPH solution to the boiling tube.
- 3. If a precipitate does not form, add dilute H_2SO_4 dropwise until a precipitate forms.
- 4. Filter the mixture under reduced pressure to isolate the solid derivative.
- 5. Purify the derivative by recrystallisation from the minimum amount of hot ethanol.
- 6. Filter the purified derivative under reduced pressure.
- 7. Dry a sample of the derivative with filter paper.
- 8. Use a capillary tube to obtain a melting point for this sample.
- 9. Repeat steps 1-8 with other unknown aldehydes/ketones.

What are the hazards associated with 2,4-DNPH, CH₃CH₂COCH₃, C₆H₅CHO, H₂SO₄ and CH₃CH₂OH?

What are the hazards associated with 2,4-DNPH, CH₃CH₂COCH₃, C₆H₅CHO, H₂SO₄ and CH₃CH₂OH?

- 2,4-DNPH: flammable, toxic
- CH₃CH₂COCH₃: flammable, irritant
- C₆H₅CHO: harmful
- H₂SO₄: irritant
- CH₂CH₂OH: highly flammable

During recrystallisation, why is it necessary to add only a minimal amount of hot ethanol to the solid derivative?

During recrystallisation, why is it necessary to add only a minimal amount of hot ethanol to the solid derivative?

A minimal amount of hot ethanol is used to achieve a large yield of the required solid on recrystallisation. A larger yield is gained since using a minimum amount reduces the amount lost by retention in the ethanol.

Explain how the melting point of a sample relates to the purity of the compound

Explain how the melting point of a sample relates to the purity of the compound

Pure substances will have a sharp melting point whereas a substance with impurities will melt over a range of temperatures.

What are the advantages of filtering under reduced pressure?

What are the advantages of filtering under reduced pressure?

- Filtering under reduced pressure is much faster than standard filtration.
- Reduced pressure filtration is more efficient at removing residual liquid compared to standard filtration. This obtains a purer solid.

