<u>Topic 9 – Nitrogen compounds</u> <u>Revision Notes</u>

1) <u>Amines - introduction</u>

- In primary amines, a nitrogen atom is attached to one alkyl group and two hydrogen atoms. The general formula for a primary amine is RNH₂
- The simplest amine is methylamine, CH₃NH₂. Other amines of interest are ethylamine, CH₃CH₂NH₂, and phenylamine, C₆H₅NH₂

 In amines, the N has 3 bonding pairs and 1 lone pair so shape is pyramidal, bond angle = 107°

2) Amines as bases

- Bases are proton (H⁺) acceptors.
- Amines can accept protons because of the lone pair on the N
- This lone pair forms a co-ordinate bond with an H⁺ e.g.

with an acid	CH3NH2 + HCI → Methylamine	CH ₃ NH ₃ ⁺ + Cl ⁻ methylammonium chloride
with water	$CH_3CH_2NH_2 + H_2O$	CH ₃ CH ₂ NH ₃ ⁺ + OH ⁻
	Ethylamine	ethylammonium hydroxide

N now has 4 bonding pairs so its shape is tetrahedral, bond angle 109.5°

3) <u>Preparation of amines</u>

a) Reduction of nitrobenzene to make phenylamine

Here, reduction means gain of hydrogen

 $\begin{array}{ll} C_6H_5NO_2 + 6[H] \rightarrow & C_6H_5NH_2 + 2H_2O \\ \text{Nitrobenzene} & \text{phenylamine} \end{array}$

ReagentsTin (Sn) and concentrated hydrochloric acidConditionsReflux

b) Substitution of halogenoalkanes

 $\begin{array}{c} \mathsf{CH}_3\mathsf{CH}_2\mathsf{CI}+\mathsf{NH}_3 \rightarrow & \mathsf{CH}_3\mathsf{CH}_2\mathsf{NH}_2+\mathsf{HCI}\\ \text{Chloroethane} & \text{ethylamine} \end{array}$

Reagentsexcess ammoniaConditionsdissolved in ethanol

4) Synthesis of azo dyes

- Azo dyes contain the azo functional group -N=N-0
- Azo dyes are brightly coloured and bond well to fabrics 0
- Phenylamine can be converted into an azo dye by a two stage process 0
- Stage 1 phenylamine to diazonium salt 0

 $C_6H_5NH_2 + HNO_2 + HCI \rightarrow C_6H_5N^{-}N^+ + CI^- + 2H_2O$ Phenylamine

benzenediazonium chloride

HNO₂/HCI (nitrous acid/HCI) or NaNO₂/HCI (sodium nitrite/HCI) Reagents Conditions <10°C (to prevent the diazonium salt decomposing)

Stage 2 – coupling with phenol under alkaline conditions 0

$$C_6H_5N^{-}N^+ + C_6H_5OH + OH^- \rightarrow C_6H_5N = NC_6H_4OH + H_2O$$

Reagents phenol/NaOH Conditions <10°C

These reactions are used in formation of dyestuffs (soluble substances used for 0 staining or colouring fabrics)

5) Amino acids - introduction

Amino acids found in living things have the general formula RCH(NH₂)COOH where R ٠ is an alkyl group

- Amino acids contain an acidic functional group (-COOH) and a basic functional group • (-NH₂). This means they can act as both acids and bases (they are amphoteric)
- Technically, these are ~-amino acids because the -NH2 is on the C next to the -COOH. -- amino acids have the -NH2 on the next but one C to the -COOH
- If R is H, the amino acid is glycine, NH₂CH₂COOH. The proper chemical name for glycine is 2-aminoethanoic acid
- If R is CH₃, the amino acid is alanine, CH₃CH(NH₂)COOH. The proper chemical name for glycine is 2-aminopropanoic acid
- All amino acids, apart from glycine, show optical isomerism as the central C has four • different groups attached to it

• There are 20 different amino acids in the human body

6) Effect of pH

- At a pH value called the isoelectric point, amino acids exist as zwitter ions (zwitter is a German word whose English equivalent is hybrid). These ions contain a full positive charge and a full negative charge
- □ The –COOH has lost H⁺ and the –NH₂ has gained H⁺
- Amino acids exist in this form in the solid state and have high melting points because there are strong ion-ion forces between the zwitter ions
- Different R groups in α-amino acids result in different isoelectric points

□ At a pH lower than the isoelectric point the amino acid has the form shown below. The amino acid is in acidic conditions and the NH_2 will gain H^+ to become NH_3^+

At a pH higher than the isoelectric point the amino acid has the form shown below. The amino acid is in alkaline conditions and the COOH will lose H⁺ to become COO⁻

7) Dipeptides, polypeptides and proteins

- Amino acids can join together to form dipeptides
- This uses the –COOH group of one amino acid and the –NH₂ group of another amino acid (see equation on next page)
- The link between the two amino acids is called a peptide link (-CONH-)
- This is a condensation reaction (a small molecule, like water, is produced when a link is made)
- Three amino acids joined together make a tripeptide. Several amino acids in a chain are a polypeptide
- Proteins are long chains of amino acids. Protein chains are held in one of two basic shapes by hydrogen bonds between the N-H of one amino acid and the C=O of another amino acid

• If the 2 amino acids are not the same, 2 different dipeptides can be formed e.g.

HOOC-CHR¹-NHCO-CHR²-NH₂ R¹ nearest COOH

HOOC-CHR²-NHCO-CHR¹-NH₂ R¹ nearest NH₂

- A peptide link can be split up by hydrolysis
- Acid hydrolysis with HCI(aq) produces amino acids (COOH groups)
- Alkaline hydrolysis with NaOH(aq) produces carboxylates (COO⁻ groups)