
<u>Topic 10 – Alcohols</u> <u>Revision Notes</u>

1. General

- Functional group is -OH
- General formula is C_nH_{2n+1}OH
- The –OH group means that alcohols hydrogen bond with each other. Alcohols have low volatility (high boiling points) for their size because the hydrogen bonds have to be broken
- Alcohols are highly soluble in water because hydrogen bonding occurs between –OH
 of alcohols and water molecules

2. Classifying Alcohols

- Classified according to the number of carbons attached to C-OH
- Primary alcohols have 1 carbon attached e.g. ethanol
- Secondary alcohols have 2 carbons attached e.g. propan-2-ol
- Tertiary alcohols have 3 carbons attached e.g. 2-methylpropan-2-ol

3. Reactions of Alcohols

- Reagents = the other chemicals needed
- Conditions = required temperature, pressure, catalyst etc

a) Combustion

- Example $C_2H_5OH + 3O_2 \rightarrow 2CO_2 + 3H_2O$
- Balance C's then H's then O's
- Don't forget the O in the OH when balancing

b) Dehydration to form an alkene

- Example $C_2H_5OH \rightarrow CH_2=CH_2 + H_2O$
- Needs heat and a strong acid catalyst (concentrated sulphuric acid or concentrated phosphoric acid)

c) Reaction with a carboxylic acid to form an ester (esterification)

Carboxylic acids contain the functional group –COOH, esters have the form RCOOR'

• Example $C_2H_5OH + CH_3COOH \rightarrow CH_3COOC_2H_5 + H_2O$

Ethanoic acid ethyl ethanoate

Conditions catalyst of concentrated H₂SO₄

d) Oxidation of primary alcohol to aldehyde

- Here, oxidation means loss of hydrogen
- Oxidising agent represented by [O] in equations
- Colour change is from orange to green
- Aldehyde has functional group -CHO

Example
$$CH_3CH_2OH + [O] \rightarrow CH_3CHO + H_2O$$

ethanal

- Reagents oxidising agent is acidified potassium dichromate (K₂Cr₂O₇/H₂SO₄)
- Conditions distil off aldehyde as it is formed
- Ethanal boils at about room temperature. Ethanol and ethanoic acid have higher boiling points due to hydrogen bonding
- To stop the aldehyde being further oxidised, it needs to be distilled off as it forms. This removes the aldehyde from the oxidising mixture. This is done by dripping a mixture of ethanol and dichromate into the hot acid

e) Oxidation of primary alcohol to carboxylic acid

Colour change is from orange to green

Example
$$CH_3CH_2OH + 2[O] \rightarrow CH_3COOH + H_2O$$

Ethanoic acid

- Reagents oxidising agent is acidified potassium dichromate (K₂Cr₂O₇/H₂SO₄)
- **Conditions** reflux (continuously boil and condense)
- To make sure the aldehyde is further oxidised to the carboxylic acid, it needs to be refluxed with the Cr₂O₇²-/H⁺. Refluxing is continuous boiling and condensing. It allows the alcohol to be simmered with the oxidising agent for a period of time without losing any of the product

f) Oxidation of secondary alcohols

A secondary alcohol is oxidised to a ketone (functional group >C=0) using $K_2Cr_2O_7/H_2SO_4$

Example
$$CH_3CH(OH)CH_3 + [O] \rightarrow CH_3COCH_3 + H_2O$$

Propan-2-ol propanone

g) Oxidation of tertiary alcohols

Tertiary alcohols are resistant to oxidation because there is no H attached to the C of the C-OH

5. <u>Uses of Alcohols</u>

a) Ethanol

- In alcoholic drinks.
- As a solvent (in the form methylated spirits)

b) Methanol

- As a petrol additive to improve combustion
- As a feedstock in the production of organic chemicals

6. <u>Industrial Production of Ethanol</u>

Feedstock = starting material in an industrial process i.e. glucose or ethene here

a) Fermentation of Glucose

- Slow reaction, impure product, batch process, uses renewable resources
- Requires enzyme from yeast (zymase), temperature 35-40°C, no air (anaerobic)

$$C_6H_{12}O_6 \rightarrow 2C_2H_5OH + 2CO_2$$

b) Hydration of Ethene

- Fast reaction, pure product, continuous process, uses non-renewable resources.
- Requires phosphoric acid catalyst (H₃PO₄), temperature 300°C, pressure 6.5 Mpa

$$CH_2=CH_2 + H_2O \rightarrow C_2H_5OH$$

c) Comparison

- Glucose is produced from plants, which are a renewable resource as they only take a few months to grow
- Ethene is produced from crude oil, which is a non-renewable resource that takes millions of years to form