
<u>Topic 7 – Basic Concepts</u> <u>Revision Notes</u>

1) <u>Formulae</u>

Be able to recognise and use the different ways of showing organic compounds.

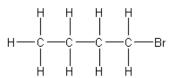
- **Molecular formula** is the actual number of atoms of each element in a molecule e.g. C₂H₆O for ethanol
- **Empirical formula** is the simplest whole number ratio of the atoms of each element in a molecule e.g. CH_2 for ethene (from molecular formula $C_2H_4 \div 2$)
- General formula is the simplest algebraic formula for a member of a homologous series e.g. C_nH_{2n+2} for alkanes
- **Structural formula** is the minimum detail that shows the arrangement of the atoms in a molecule e.g. CH₃CH₂OH for ethanol
- **Displayed formula** shows the relative positioning of atoms and the bonds between them e.g. for ethanol:

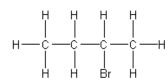
All bonds should be shown. Do not put -OH for the alcohol group

 Skeletal formula shows just the carbon skeleton and functional groups e.g. for ethanol
OH (see also Appendix 1)

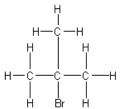
2) <u>Functional groups and naming organic compounds</u>

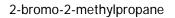
Be able to recognise and use the following terms.

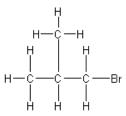

- A homologous series is a series of organic compounds having the same functional group with successive members differing by CH₂
- Alkanes, alkenes, alcohols and halogenoalkanes are all homologous series
- A functional group is a group of atoms responsible for the characteristic reactions of a compound e.g. C=C for alkenes and –OH for alcohols


The rules for naming organic compounds are as follows.

- 1) The functional group gives the ending of the name e.g. –ol for an alcohol
- 2) The number of carbons gives the first part of the name e.g. prop- or propan- for 3 carbons
- 3) Number the carbon chain to give the functional group carbon the lowest number
- Any side chains (branches) or halogens go at the front of the name with commas between numbers and dashes between numbers and words e.g. 2,2dimethylhexane
- 5) With more than 1 side chain or halogen, use alphabetical order e.g. 1-bromo-2methylbutane


3) <u>Structural isomers</u>


- Structural isomers have the same molecular formula but different structural formulae e.g. the molecular formula C₄H₁₉Br can produce four different structures
- Differences between structural isomers arise from the position of the functional group and/or the arrangement of the carbon chain e.g. C₄H₉Br has four isomers



1-bromobutane

2-bromobutane

1-bromo-2-methylpropane

4) Cyclic Alkanes

- Carbon can form rings as well as chains
- Cyclic alkanes have general formula C_nH_{2n} (same as alkenes)
- Cyclopentane is 5 CH₂'s in a ring with molecular formula C₅H₁₀. Skeletal formula is a pentagon
- Cyclohexane is 6 CH₂'s in a ring. Skeletal formula is a hexagon

5) <u>Percentage yield</u>

- Most organic reactions do not give 100% conversion of reactant to product
- Reasons for this include the fact that most organic reactions are reversible, there may be side products and there will be loss of the desired product during purification

% yield = <u>Actual moles of product</u> x 100% Possible moles of product

<u>Example</u>

In the following reaction, 2.18g of bromoethane produce 0.75g of ethanol. Calculate the percentage yield. $CH_3CH_2Br + NaOH \rightarrow CH_3CH_2OH + NaBr$

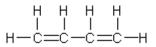
= mass/molar mass
= 2.18/109
= 0.020 mol
= 0.020 mol (from equation)
= 0.75/46.0
= 0.0163 mol
= 0.0163/0.020 x 100%
= 82%

6) <u>Atom economy</u>

Atom economy =	Molecular mass of desired products	x 100%
	Sum of molecular masses of all products	

In the above example

Molecular mass of desired product Molecular masses of all products	= 46.0 = 46.0 + 102.9 = 148.9
Atom economy	= 46.0/148.9 x 100% = 30.9%


- Chemical processes with a high atom economy produce fewer waste materials
- Atom economy can be improved by developing a use for the by-product (unwanted product) or finding an alternative process with a higher atom economy

6) More on naming organic compounds

This section covers naming compounds with more than one alkene or alcohol functional group

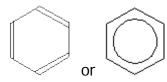
a) Dienes


Compounds containing two alkene groups are called dienes e.g.

The name of this compound is buta-1,3-diene

b) Diols and triols

Compounds containing two alcohol groups are called diols while three –OH groups makes a triol e.g.


Ethane-1,2-diol

propane-1,2,3-triol (glycerol)

Appendix 1 - Skeletal Formulae

Skeletal formulae show carbon-carbon bonds and functional groups

Alkane	e.g. hexane	\sim
Alkene	e.g. hex-3-ene	\sim
Alcohol	e.g. ethanol	ОН
Halogenoalkane	e.g. 2-chloro-2-fluoropentane	
Aldehyde	e.g. butanal	$\sim\sim\sim$
Ketone	e.g. propanone	
Carboxylic acid	e.g. 3-methylbutanoic acid	СН
Ester	e.g. methyl propanoate	
Amine	e.g. ethylamine	NH ₂
Benzene		~ ^

