Alkanes

ALKANES

F322

General • a homologous series with general formula **C**_n**H**_{2n+2} - *non-cyclic only*

- saturated hydrocarbons all carbon-carbon bonding is single
 - bonds are spaced tetrahedrally about carbon atoms.

Isomerism • the first example of structural isomerism occurs with C₄H₁₀

• two structural isomers exist

 $CH_{3}-CH_{2}-CH_{2}-CH_{3}$ $CH_{3}-CH_{2}-CH_{2}-CH_{3}$ $CH_{3}-CH_{3}-CH_{3}-CH_{3}$ $CH_{3}-CH_{3}-CH_{3}-CH_{3}$ $CH_{3}-CH_{3}-CH_{3}-CH_{3}$

Structural isomers have different physical properties

Draw out and name the structural isomers of C_5H_{12} and C_6H_{14} .

Physical properties of alkanes

Boiling point • increases as they get more carbon atoms in their formula

- the more atoms there are the greater the intermolecular van der Waals' forces
- greater intermolecular force = more energy needed to separate the molecules
- the more energy required, the higher the boiling point

CH₄ (-161°C) **C**₂**H**₆ (-88°C) **C**₃**H**₈ (-42°C) **C**₄**H**₁₀ (-0.5°C)

difference gets less - mass is increasing by a smaller percentage each time

- straight chains have larger surface areas giving greater molecular interaction
- branched molecules are more compact and have less intermolecular attraction
- the lower the intermolecular forces, the lower the boiling point

"The greater the branching, the lower the boiling point "

2.2 Arrange the isomers of C_5H_{12} in ascending boiling point order.

Melting point A general increase with molecular mass BUT not as regular as for boiling point.

Solubility Are non-polar so are immiscible with water but soluble in most organic solvents.

1

2

CHEMICAL PROPERTIES OF ALKANES

Introduction • fairly unreactive - their old family name, paraffin, means little reactivity

- consist of relatively strong, almost **non-polar** covalent bonds
- have no real sites that will encourage substances to attack them

Combustion • alkanes make useful fuels - especially the lower members of the series

• combine with oxygen in an exothermic reaction

complete combustion	CH ₄ (g)	+	20 ₂ (g)	>	CO ₂ (g)	+	$2H_2O(I)$
incomplete combustion	CH ₄ (g)	+	1½0 2(g)	>	CO (g)	+	2H₂O (I)

• the greater the number of carbon atoms, the more energy produced but...

• the greater the amount of oxygen needed for complete combustion.

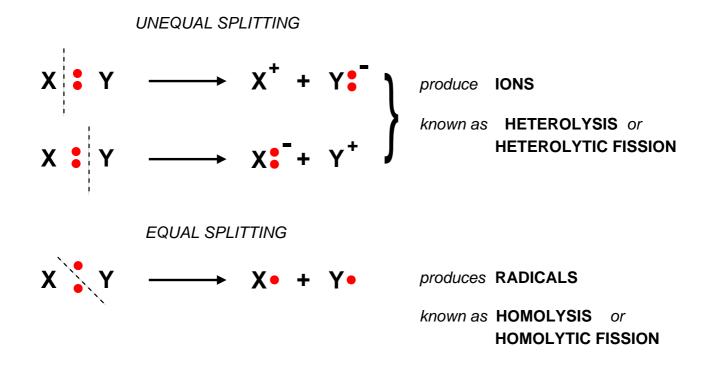
Handy tip When balancing equations involving complete combustion, every carbon in the original hydrocarbon gives a carbon dioxide and every two hydrogens give a water molecule. Put these numbers into the equation, count up the O and H atoms on the RHS of the equation then balance the oxygen molecules on the LHS.

Q.3	• Write out the equation for the complete combustion of						
	butane						
	hexane						
	decane						
	• List uses of	methane propane butane					

Q.4

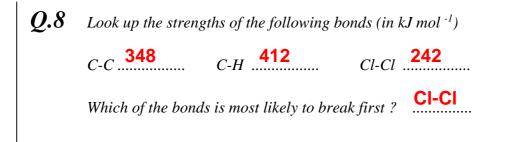
• Discuss the dangers of being over reliant on fossil fuels for providing energy.

• What alternative fuels are available?


• List any problems associated with an increase of CO_2 in the atmosphere.

Pollution	Processes involving combustion give rise to a variety of pollutants power stations SO ₂ emissions produce acid rain
	internal combustion engines CO , NO _x and unburnt hydrocarbons
I	
Q.	5 What does the formula NO_x stand for ?
<i>Q</i> .	6 Why are the following classed as pollutants ?
	• <i>CO</i>
	• NO_x
	• unburnt hydrocarbons
·	
Removal	SO2react effluent gases with a suitable basic compound (e.g.CO and NOxpass exhaust gases through a catalytic converter
Removal Catalytic converters	CO and NO _x pass exhaust gases through a catalytic converter In the catalytic converter CO is converted to CO_2 NO _x are converted to N ₂
Catalytic	CO and NO _x pass exhaust gases through a catalytic converter In the catalytic converter CO is converted to CO_2 NO _x are converted to N_2 Unburnt hydrocarbons to CO_2 and H_2O
Catalytic	CO and NO _x pass exhaust gases through a catalytic converter In the catalytic converter CO is converted to CO_2 NO _x are converted to N ₂
Catalytic	CO and NO _x pass exhaust gases through a catalytic converter In the catalytic converter CO is converted to CO ₂ NO _x are converted to N ₂ Unburnt hydrocarbons to CO ₂ and H ₂ O $e.g.$ 2NO + 2CO \longrightarrow N ₂ + 2CO ₂
Catalytic	CO and NO _x pass exhaust gases through a catalytic converter In the catalytic converter CO is converted to CO ₂ NO _x are converted to N ₂ Unburnt hydrocarbons to CO ₂ and H ₂ O <i>e.g.</i> 2NO + 2CO \longrightarrow N ₂ + 2CO ₂ • catalysts are made of finely divided rare metals • leaded petrol must not pass through the catalyst as the lead deposits on the

F322


Breaking covalent bonds

There are three ways to split the shared pair of electrons in an **unsymmetrical** covalent bond.

If several bonds are present the weakest bond is usually broken first.

- energy to break bonds can come from a variety of sources such as heat and light
- in the reaction between methane and chlorine either can be used but in the laboratory a source of UV light (or sunlight) is favoured.

Free Radicals

- reactive species (atoms or groups) possessing an **unpaired electron**
 - formed by homolytic fission (homolysis) of covalent bonds
 - formed during the reaction between chlorine and methane
 - formed during thermal cracking

4

F322

5

Chlorination of methane

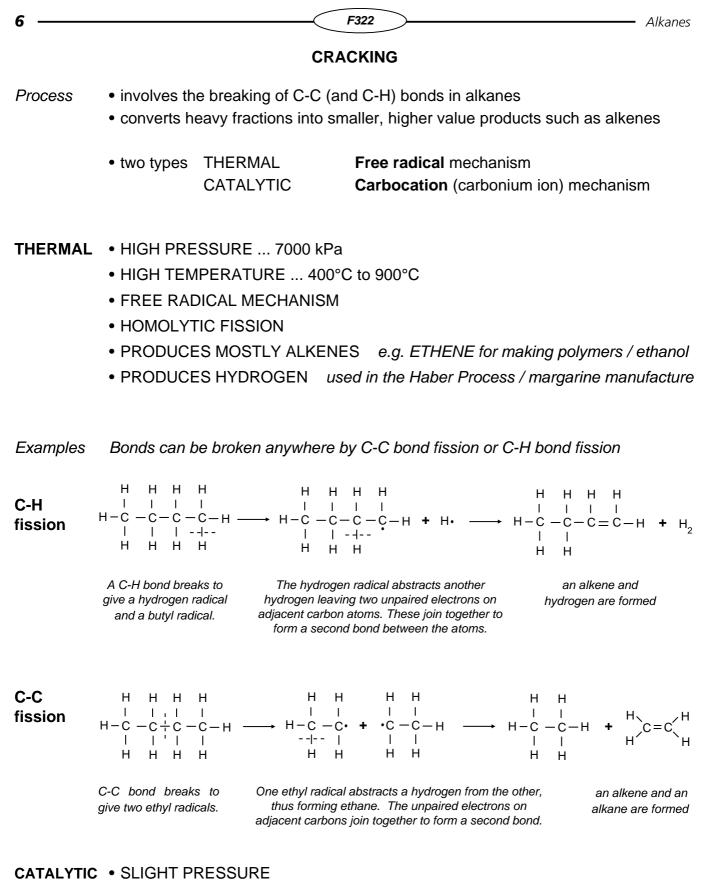
Reagents chlorine and methane

Conditions UV light or sunlight - heat could be used as an alternative energy source

Equation(s)	CH ₄ (g) + C <i>l</i> ₂ (g)	>	$\mathbf{HC}\mathbf{l}(g) + \mathbf{CH}_{3}\mathbf{C}\mathbf{l}(g)$	chloromethane
	$CH_{3}Cl(g) + Cl_{2}(g)$	>	$HCl(g) + CH_2Cl_2(I)$	dichloromethane
	$CH_2Cl_2(I) + Cl_2(g)$	>	HC <i>l</i> (g) + CHC <i>l</i> ₃ (l)	trichloromethane
	CHC <i>l</i> ₃ (I) + C <i>l</i> ₂ (g)	>	$HCl(g) + CCl_4(I)$	tetrachloromethane

- *Mixture*free radicals are very reactive as they are trying to pair up their unpaired electron
 if there is sufficient chlorine, every hydrogen will eventually be replaced.
- Mechanism Mechanisms portray what chemists think is actually going on in the reaction, whereas an equation tells you the ratio of products and reactants. The chlorination of methane proceeds via a mechanism known as **FREE RADICAL SUBSTITUTION**. It gets its name because the methane is attacked by free radicals resulting in a hydrogen atom being substituted by a chlorine atom.

The process is an example of a **chain reaction**. Notice how, in the propagation step, one chlorine radical is produced for every one used up.

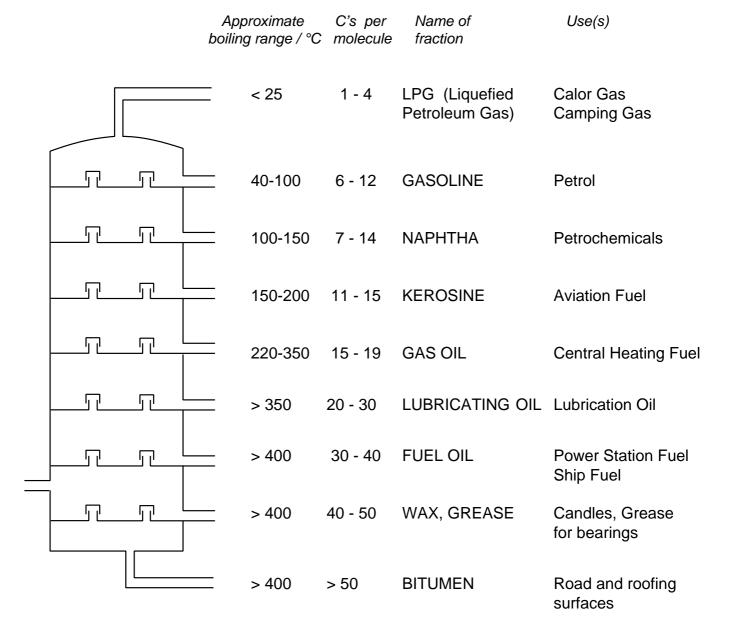

Steps	Initiation	$Cl_2 \longrightarrow 2Cl$	radicals created
	Propagation	$\begin{array}{rcl} Cl^{\bullet} &+ & CH_4 & \longrightarrow & CH_3^{\bullet} &+ & HCl \\ Cl_2 &+ & CH_3^{\bullet} & \longrightarrow & CH_3Cl &+ & Cl^{\bullet} \end{array}$	radicals used and then re-generated
	Termination	$\begin{array}{rclccccccccccccccccccccccccccccccccccc$	radicals removed

0.9

Write out the two propagation steps involved in the conversion of CH_3Cl into CH_2Cl_2 .

Four chlorinated compounds can be produced from chlorine. State how many different chlorinated compounds can be made from...

(i) ethane


- HIGH TEMPERATURE ... 450°C
- ZEOLITE (Crystalline aluminosilicates; clay like substances) CATALYST
- CARBOCATION (carbonium ion) MECHANISM
- HETEROLYTIC FISSION
- MAKES BRANCHED / CYCLIC ALKANES & AROMATIC HYDROCARBONS
- MOTOR FUELS ARE A PRODUCT

The Petrochemical Industry

F322

Crude Oil In the past, most important organic chemicals were derived from coal. Nowadays, natural gas and crude petroleum provide an alternative source.

- the composition of crude petroleum varies according to its source
- it is a dark coloured, viscous liquid
- consists mostly of alkanes with up to 40 carbon atoms +water, sulphur and sand
- can be split up into fractions by fractional distillation
- distillation separates the compounds according to their boiling point
- at each level a mixture of compounds in a similar boiling range is taken off
- rough fractions can then be distilled further to obtain narrower boiling ranges
- some fractions are more important usually the lower boiling point ones
- high boiling fractions may be broken down into useful lower ones CRACKING

Q.10 Not all fractions are of equal importance. Why is this? What is done to get a greater amount of the more useful products?

7