

OCR (B) Chemistry A-Level

PAG 10: Rates of reaction - initial rates method

🕟 www.pmt.education

▶ Image: Contraction PMTEducation

10.1 Rates - lodine clock

Equipment list

- 1.00 mol dm⁻³ $KI_{(aq)}$ 0.0400 mol dm⁻³ $K_2S_2O_{8(aq)}$
- 0.0100 mol dm⁻³ Na₂S₂O_{3(aq)}
- Starch
- Distilled water
- Syringes of different volumes •
- Stopwatch
- Measuring cylinders
- **Beakers**

Method

- 1. Add 5 cm³ potassium iodide, 2 cm³ sodium thiosulfate and 1 cm³ starch solution into a conical flask and mix well.
- 2. Add 2 cm³ of potassium peroxodisulfate and start the stopwatch.
- 3. Stop the stopwatch when the mixture turns blue-black.
- Repeat the experiment with varying concentrations of potassium iodide.

For this experiment you need to identify what the different variables are:

- The volumes of potassium peroxodisulfate, sodium thiosulfate and starch need to be kept constant as they are control variables.
- The concentration of KI is the **independent** variable.
- The time taken for the solution to go blue-black is the **dependent** variable.

Processing data

1. Set up a spreadsheet with a table with these headings:

Vol. Kl _(aq) /H cm ³	Vol. H ₂ O / cm³	Vol. $S_2O_3^{2^-}$ (aq) / cm ³	Vol. $S_2 O_8^{2-}{}_{(aq)}/cm^3$	Vol. Starch / cm ³	Total vol. / cm ³	[l- _(aq)] / cm ³	Time / s	Initial rate / mol dm ⁻³ s ⁻¹
--	-----------------------------------	--	-----------------------------------	-------------------------------------	------------------------------------	--	----------	--

DOG PMTEducation

Add your data to the spreadsheet

- Calculate $[I_{(aq)}]$ using the formula, $[I_{(aq)}] = \frac{V \text{ olume of } KI (\text{in } cm^3)}{10}$
- Calculate initial rate, using the formula, initial rate = $\frac{2 \times 10^{-3}}{r}$

- 2. Use the spreadsheet program to plot your data points of initial rate against iodine concentration.
- 3. Use the graph to find the **order** of reaction with respect to $[I_{(ac)}]$.
- 4. Determine the gradient of the line of best fit.
- 5. The rate equation for this reaction:

rate = $k[I^{(aq)}][S_2O_8^{2}(aq)]$

Work out the concentration of $S_2 O_8^{2-}(aq)$ that you used in each experiment.

Find the **rate constant** for the reaction using the equation above.

Errors

- Inaccurate timing of the appearance of blue colour:
 Could use two students to time simultaneously and use an average value.
- Adding starch slightly increases the volume which affects the concentrations of the reactants and thus the amount they change over time. Take into account starch volume

Safety

> Potassium peroxodisulfate - may cause respiratory irritation and asthma symptoms. Also a strong oxidiser so keep away from flammable materials.

▶ Image: PMTEducation