

Edexcel Chemistry A-level

Practical 10

Constructing electrochemical cells.

S www.pmt.education

▶ Image: PMTEducation

Method

- 1. For each half cell, clean the strips of either metal or graphite (if you have an ion/ion half cell) with sandpaper so there is surface area exposed for the reactions to occur.
- To create a salt bridge soak a strip of filter paper in KNO₃.
 [Used to complete the circuit by allowing movement of ions and balancing charges. Use of K⁺ and NO₃⁻ minimises the chance of precipitates forming (soluble salts).]
- 3. Use a high resistance voltmeter to find the value of the E_{cell}.

Diagram

Key Points

- Standard conditions: 1 mol dm⁻³ solutions, gases at 100 kPa, 298 K.
- If the value is -ve, the electrodes are the wrong way round.
- Remember, for a thermodynamically feasible process, EMF has to be positive.
- EMF = E_R E_L, where R right hand cell, where the reduction occurs, and E_L left hand cell, where oxidation occurs.

DOG PMTEducation

Network www.pmt.education

Safety

- Some solutions are **too dangerous** to use at 1 mol dm⁻³ (e.g. silver nitrate which is highly oxidising).
- Zinc sulphate and iron (II) sulphate are **harmful to the environment** therefore have to be disposed of safely.
- Electrodes must be made from an **inert** substance and cannot be made from a metal that reacts with water (e.g. Mg).
- Differences between experimental values and theoretical values usually stem from the **conditions** not being standard.

▶ Image: Contraction PMTEducation