

Edexcel Chemistry A-level

Practical 4

Rates of hydrolysis of halogenoalkanes.

Method

- 1. Set up 3 test tubes, each with 1 cm³ of ethanol and two drops of a haloalkane. [iodo/bromo/chloro alkanes]
- 2. Place the test tubes in a water bath (60 °C), along with a test tube of 0.1 mol dm⁻³ silver nitrate and leave all to reach a constant temperature.
- 3. Quickly add 1 cm³ of a solution of silver nitrate to each test tube containing a haloalkane, and start a stopwatch.
- 4. Measure and record the time taken for the precipitates to form in each of the test tubes (this is a measure of the rate of reaction).

Key points

- This is nucleophilic substitution where water acts as the nucleophile (hydrolysis).
- Precipitation with Ag⁺:

$$RX + H_2O \rightarrow ROH + H^+ + X^-$$

 $X^-_{(a0)} + Ag^+_{(a0)} \rightarrow AgX_{(s)}$

• The variables you control should be either the nature of the halide (changing CI, Br and I within a particular haloalkane), or the type of alkane (primary, secondary, tertiary with one type of halide). Only change a single variable.

Errors

- Use water bath to control the temperature.
- Use lower temperatures to reduce the rate of reaction. This will make the time differences will be more pronounced producing a lower uncertainty.

Expected Results

Haloalkane	Result
Chloroalkane	White precipitate forms slowly.
Bromoalkane	Cream precipitate forms faster than chloro but slower than iodo.
lodoalkane	Yellow precipitate forms quickly.

These results reflect the **relative carbon-halogen bond strengths**. *C-I* is the weakest bond in this series, so the reaction is the fastest