

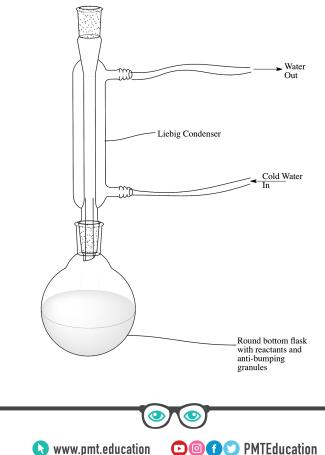
Edexcel International Chemistry <u>A-level</u>

Practical 7

Oxidation of Propan-1-ol to Produce Propanal and Propanoic Acid

S www.pmt.education

▶ Image: Contraction PMTEducation


The oxidation of propan-1-ol to **propanal** (aldehyde) requires **distillation** apparatus. To oxidise propan-1-ol completely to **propanoic acid** (carboxylic acid), **reflux** apparatus is required.

Method

- 1. Measure 20 cm³ of acidified potassium dichromate solution into a pear-shaped flask. Cool down the flask using an ice bath.
- 2. Add a few anti-bumping granules. These will prevent the formation of large gas bubbles that cause violent boiling.
- 3. Add 1 cm³ of ethanol dropwise to the pear-shaped flask using a pipette. Stir to ensure complete mixing.
- 4. Warm up the flask to room temperature.
- 5. Set up the reflux apparatus as shown below, placing the flask in a water bath.
- 6. Heat using the Bunsen burner for 5-10 minutes.
- 7. Allow some time for the apparatus to cool down. Afterwards, collect the product via distillation using the equipment shown in the diagram below.
 - In this set-up the propan-1-ol will be completely oxidised to propanoic acid.
 - Use the thermometer to prevent the temperature from rising too high.
- 8. To preparing an aldehyde, conduct the same reaction under distillation conditions without the reflux process.
 - In this set-up the propan-1-ol will be oxidised to propanal.

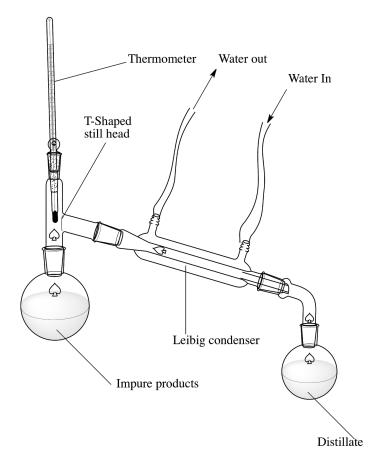

For both reactions, the colour change occurs from orange $(Cr_2O_7^{2-})$ to green (Cr^{3+}) as the potassium dichromate solution is reduced.

Diagram - Reflux

Diagram - Distillation

S www.pmt.education

 \odot

▶ Image: Second Second