AS EQUATIONS - Unit 2

Group 2 metals – with H ₂ O			
	Mg Ca,Sr,Ba	Mg + H ₂ O → MgO + H ₂ (steam only) Ca + 2H ₂ O → Ca(OH) ₂ + H ₂	
Group 2 metals – with O ₂		$2Mg + O_2 \rightarrow 2MgO$	
Group 2 metals – with Cl ₂		Mg + Cl ₂ \rightarrow MgCl2	
Group 2 Oxides – with H ₂ O		$MgO + H_2O \rightarrow Mg(OH)_2$	
Group 2 Oxides – with acids		$MgO + H_2SO_4 \rightarrow MgSO_4 + H_2O$	
Thermal stability Group 1 Ca	rbonates	All stable to heat except for Li ₂ CO ₃	
Group 2 Ca	irbonates	$MgCO_3 \rightarrow MgO + CO_2$	
Group 1 Nit	trates Li: Na, K, Rb, Cs	$2LiNO_3 \rightarrow Li_2O + 2NO_2 + \frac{1}{2}O_2$ $NaNO_3 \rightarrow NaNO_2 + \frac{1}{2}O_2$	
Group 2 – I	Nitrates	$Mg(NO_3)_2 \rightarrow MgO + 2NO_2 + \frac{1}{2}O_2$	
Solubility Group 1 and 2 Sulphates Group 1 and 2 Hydroxides		Decreases down the group - $BaSO_4$ is insolubl Increases down the group - $Mg(OH)_2$ is insoluble	
Group 7 elements – with H ₂ O		$CI_2 + H_2O \rightarrow HCI + HOCI$	
Group 7 elements – with NaOH In Cold Dilute Alkali: $Cl_2 + 2OH^- \rightarrow Cl^- + ClO^- + H_2O$ Reaction type - Disproportionation			
In Hot Conc. Alkali: $3Cl_2 + 6OH^- \rightarrow ClO_3^- + 5Cl^- + 3H_2O$ Reaction type - Disproportionation			
Group 7 – Displac	cement reactions Observations	$Cl_2(g) + 2Br(aq) \rightarrow Br_2(aq) + 2Cl(aq)$ Green gas → orange solution	
Halide ions – with conc H ₂ SO ₄			
NaCl(s) + H ₂ SO ₄ \rightarrow NaHSO ₄ (s) + HCl(g) Observations Steamy white fumes NaPr(a) + HaSO ₄ \rightarrow NaHSO ₄ (a) + HPr(g)			
NaBr(s) + $H_2SO_4 \rightarrow NaHSO_4(s) + HBr(g)$ 2HBr(g) + $H_2SO_4 \rightarrow Br_2(g) + SO_2(g) + 2H_2O(I)$ Observations Steamy white fumes and orange fumes			
Nal(s) + $H_2SO_4 \rightarrow Products HI(g), I_2(g) + H_2S(g) + Observations Steamy white fumes and purple fumes$			
Test for halide ions $Ag^+(aq) + Cl^-(aq) \rightarrow AgCl(s)$			
Observations White ppt – soluble in dilute ammonia			

Halogenoalkanes - with aqueous $OH^ CH_3CH_2Br + OH^- \rightarrow CH_3CH_2OH + Br^-$ Mechanism = Nucleophilic substitution (Sn1 or Sn2)			
with ethanolic OH ⁻ CH ₃ CH ₂ Br + OH ⁻ \rightarrow H ₂ C=CH ₂ + Br ⁻ + H ₂ O Mechanism = Elimination			
Halogenoalkanes - with CN ⁻ Mechanisn	$CH_3CH_2Br + CN^- \rightarrow CH_3CH_2CN + Br^-$ n = Nucleophilic substitution		
Halogenoalkanes - with aqueous silver nitrate CH ₃ CH ₂ Br + H ₂ O + Ag ⁺ → CH ₃ CH ₂ OH + AgBr Fastest halogenoalkane = lodo Explanation = C-I bond is weaker than C-Br and C-CI			
Halogenoalkanes - with NH ₃ Conditions	CH ₃ CH ₂ Br + NH ₃ → CH ₃ CH ₂ NH ₂ + HBr Conc NH ₃ / heat / closed vessel		
Preparation of halogenoalkanes			
	CH ₃ CH ₂ OH + Cl ⁻ → CH ₃ CH ₂ Cl + OH ⁻ H ₂ SO ₄ / NaCl / heat		
	CH ₃ CH ₂ OH + Br → CH ₃ CH ₂ Br + OH ⁻ NaBr / H ₃ PO ₄ / Heat		
Not H_2SO_4 / NaBr / heat as Br_2 will form			
Iodoalkanes from alcohols Conditions	CH ₃ CH ₂ OH + I ⁻ → CH ₃ CH ₂ I + OH ⁻ PI ₃ or P / I ₂		
Not H ₂ SO ₄ / Nal / heat as I ₂ will form			
Alcohols – 1º Partial Oxidation Conditions	CH ₃ CH ₂ OH + [O] → CH ₃ CHO + H ₂ O Distil product as it is formed		
Alcohols – 1° Complete Oxidation Conditions	CH ₃ CH ₂ OH + 2[O] → CH ₃ CO ₂ H + H ₂ O 5 HUR		
Alcohols – 2° Oxidation	CH ₃ CHOHCH ₃ + [O] → CH ₃ COCH ₃ + H ₂ O		
Alcohols – Dehydration Conditions	CH ₃ CH ₂ OH → H ₂ C=CH ₂ + H ₂ O 5 HUR / NaOH – Aqueous		
Alcohols – Reaction with sodium $CH_3CH_2OH + Na \rightarrow CH_3CH_2ONa^+ + \frac{1}{2}H_2$ Observation Colourless effervescence			