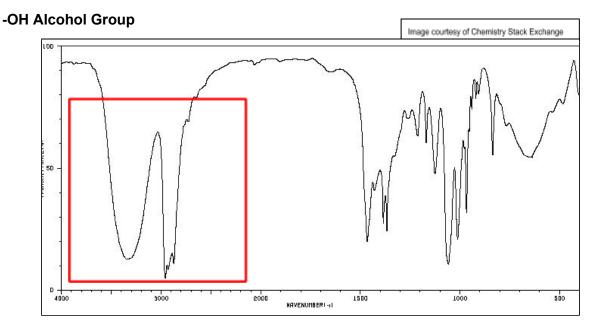


CAIE Chemistry A-level

22: Analytical Techniques Notes

This work by PMT Education is licensed under CC BY-NC-ND 4.0

Infra-red Spectroscopy

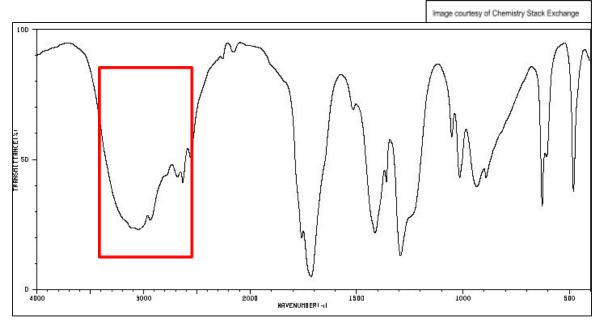

When infra-red radiation is directed at a compound, **specific frequencies are absorbed** by bonds in the molecule. The percentage transmittance of infra-red at each frequency is recorded by a detector and then plotted on a graph.

Energy that is absorbed by the compound causes bonds to **vibrate**, meaning the bond **stretches or bends**. The amount of vibration depends on the **length of the bond** and the mass of the atoms.

The peaks on an infra-red spectrum can be used to identify the functional groups present in a molecule as **each bond absorbs a specific frequency of IR radiation**. A peak can be compared with known values in the data book to identify the bond.

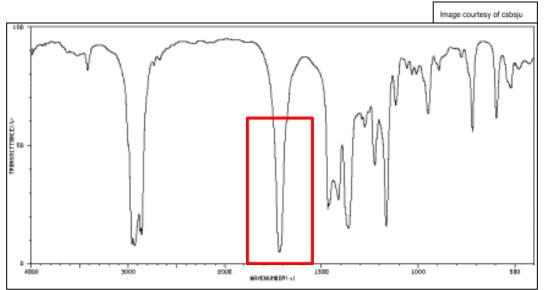
The **fingerprint region** on an infra-red spectrum is the region (typically between 1500cm⁻¹ and 500cm⁻¹) that contains a complicated series of absorptions. Every compound has a **unique** fingerprint region.

A **spectrum** is produced from the measurements which has **characteristic curves** for the different functional groups:


The characteristic peak is in the range 3230-3550 cm⁻¹

DOfS PMTEducation

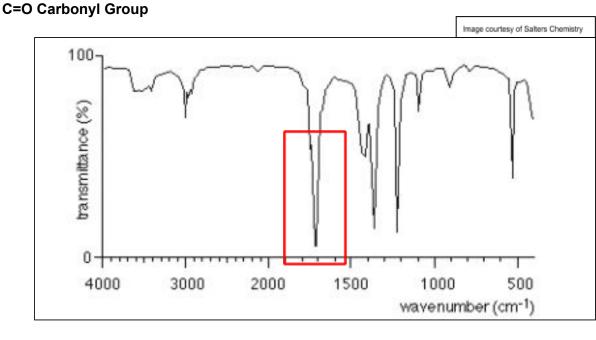
🕟 www.pmt.education



-OH Acid Group

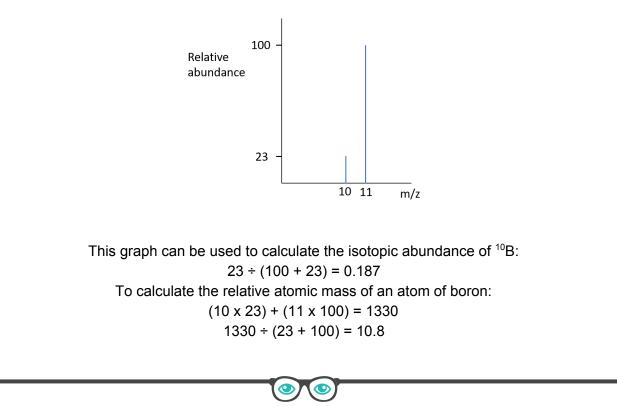
The characteristic peak is in the range 2500-3300 cm⁻¹

C=C Unsaturated Group


The characteristic peak is in the range 1620-1680 cm⁻¹

0

▶ Image: Second Second



The characteristic peak is in the range 1680-1750 cm⁻¹

Mass Spectrometry

During mass spectrometry, a **vaporised** sample (atoms or molecules) is turned into positive ions. The ions are then accelerated, deflected by a magnetic field and then detected. A graph is produced with the **mass to charge ratio** (m/z) on the x axis and **relative abundance** on the y axis:

DOfS PMTEducation

www.pmt.education

Molecular Mass

The molecular ion peak (M^+) is the peak with the greatest mass to charge ratio. The molecular mass of a compound is equal to the m/z value of this peak.

M⁺¹ peak

The M⁺¹ peak is a tiny peak which is 1 unit to the right of the molecular ion peak. This is **caused by the presence of the ¹³C isotope** (the relative abundance of ¹³C is 1.11%). ¹³C has one more neutron than ¹²C meaning that the relative formula mass is increased by 1.

The relative heights of the M^+ and M^{+1} peaks can be used to predict the number of carbon atoms (n) in a molecule:

$$n = \frac{100}{1.1} \times \frac{\text{abundance of } M^{+1} \text{ ion}}{\text{abundance of } M^{+} \text{ ion}}$$

M⁺² peak

Compounds which contain **chlorine** or **bromine** also have a M⁺² peak on their mass spectrum.

<u>Chlorine</u>

Chlorine in these compounds can be one of **two isotopes**: ³⁵Cl or ³⁷Cl. Compounds containing the ³⁷Cl isotope will have a relative formula mass that is 2 units larger than compounds containing the ³⁵Cl isotope which causes the M^{+2} peak. The peak heights of the M^{+} and M^{+2} ions are in the **ratio 3:1** because the chlorine atom is 3 times more likely to be ³⁵Cl than ³⁷Cl.

<u>Bromine</u>

Bromine has two isotopes: ⁷⁹Br and ⁸¹Br. The heights of the M⁺ and M⁺² peaks will be in the ratio 1:1 because the ratio of the two isotopes is 1:1.

For a compound with 4 bromine atoms, there will be **5 molecular peaks** because there are 5 combinations ways that you can have 4 bromine atoms (as there are two isotopes):

79 + 79 + 79 + 79 79 + 79 +79 + 81 79 + 79 +81 + 81 79 + 81 +81 + 81 81 + 81 +81 + 81

Fragmentation

Fragment ions are formed when an **unstable molecular ion breaks** up into a positive ion and an uncharged **free radical** (a species which contains an unpaired electron):

 $M^{\scriptscriptstyle +} \to X^{\scriptscriptstyle +} + Y \bullet$

Only charged particles are detected so the free radical (Y•) will not produce a line on the spectrum. Each line on the mass spectrum represents a different fragment ion.

The combination of fragment ions in a mass spectrum can be used to identify a molecule.Below is a table showing some common fragment ions:

m/z value	Fragment ion
15	CH_3^+
17	OH⁺
29	$C_2H_5^+$
43	$C_{3}H_{7}^{+}$
57	$C_4H_9^+$

0

