

CAIE Chemistry A-level

25: Equilibria (A-level only)

Notes

This work by **PMT Education** is licensed under CC BY-NC-ND 4.0

 $\bm{\bm{\circ}}$

OOOO PMTEducation

 $\mathbf \Omega$

Acids and Bases

Conjugate Acids and Bases

An acid and a base that are only different by one proton are called a **conjugate acid-base pair.** An example is that NH₃ is the conjugate base of NH₄⁺, and NH₄⁺ is the conjugate acid of NH₃. Another example is that HF is the conjugate acid of F⁻, and F⁻ the conjugate base of HF.

For example, from the diagram:

- HA and A are a conjugate pair
- \bullet H₃O⁺ and H₂O are a conjugate pair
- HA is acid-I
- A- is base-I
- \bullet H₃O⁺ is acid-II
- \bullet H₂O is base-II

Calculations

Calculating pH or H⁺ concentration:

 $pH = -log_{10}[H^+]$ $[H^+] = 10^{-pt}$

Calculations involving the acid dissociation constant, K_{a} :

For the equation $HA \neq H^* + A^-$

$$
K_a = \frac{[H^+][A^-]}{[HA]}
$$

K_a is the acid dissociation constant. The lower the K_a value, the further left the equilibrium lies. For weak acids, the K_a is very small so K_a values can be converted into pK_a values using the equation below. As pK_a increases, the strength of the acid decreases.

$$
pK_a = -\log_{10}(K_a)
$$

OOOO PMTEducation

 \bullet www.pmt.education

Calculations involving the ionic product of water, K_{ω} :

 $K_w = [H^+][OH^-]$

K_w is the **ionic product of water**. The value of K_w varies with temperature. At room temperature, this is equal to **1.00 x 10-14 mol² dm-6** .

pH of Strong Bases

Follow these steps to work out the pH of a strong base:

- 1. Calculate the concentration of hydroxide ions.
- 2. Calculate the concentration of H^+ ions using K_{w} .
- 3. Convert $[H^+]$ into pH, pH = $-log_{10}[H^+]$.

pH of Weak Acids

Follow these steps to work out the pH of a weak acid:

1. For the equation $HA(aq) \neq H^+(aq) + A^-(aq)$:

$$
K_a = \frac{[H^+][A^-]}{[HA]}
$$

- Assume that a very small number of hydrogen ions come from the dissociation of water, so $[H^+] = [A^$.
- Assume that the concentration of acid at equilibrium is the same as the original concentration because it is a weak acid so little dissociation has occurred.
- 2. Rewrite K_a :

$$
K_a = \frac{[H^+]^2}{[HA]}
$$

3. Rearrange K_{a} before entering the values to calculate [H⁺]

$$
[H^+] = \sqrt{K_a} \times [HA]
$$

4. Convert $[H^+]$ into pH: **pH = -log10[H⁺]**

pH of Strong Acids

Strong acids completely dissociate in solution so $[H^+]$ = [HA]. This means pH can easily be calculated, $pH = -log_{10}[H^+]$.

OOOO PMTEducation

Buffers

A buffer **minimises the pH change** when a **small volume** of acid or alkali is added.

Acidic Buffer

An acidic buffer has a **pH less than 7** and contains a large amount of weak acid and its conjugate base (from a salt) and relatively few H⁺ ions in equilibrium. An example of an acidic buffer is **ethanoic acid**: CH3COOH(aq) ⇋ H⁺ (aq) + CH3COO- (aq)

- Adding acid to this buffer solution increases the **concentration of hydrogen ions**. The position of equilibrium shifts left as CH₃COO⁻ reacts with most of the added H⁺ ions to form CH₃COOH in order to reduce the concentration of H⁺ ions. This prevents a large **decrease in pH**.
- Adding alkali to this buffer solution increases the concentration of OH⁻ ions. The small concentration of H⁺ ions reacts with the added OH⁻ ions to form water: H⁺ + OH⁻ \rightarrow H2O. The position of the **buffer equilibrium shifts to the right** in order to regenerate most of the H⁺ ions.

Alkaline Buffer

An alkaline buffer has a **pH greater than 7** and contains a weak base and its salt. An example of an alkaline buffer is **ammonia**: NH³ (aq) + H2O(l) ⇋ NH⁴ + (aq) + OH- (aq)

- \bullet Adding acid to this buffer solution increases the concentration of H⁺ ions. Ammonia molecules react with H⁺ ions to form ammonium ions and remove most of the added H⁺ ions. Alternatively, the H⁺ ions may react with OH⁻ ions which are present in the equilibrium to form water. This causes the position of equilibrium to shift to replace the reacted OH ions until most of the H⁺ ions have reacted.
- Adding alkali to this buffer solution **increases the concentration of OH- ions**. The position of equilibrium shifts to the left as NH₄⁺ reacts with the added OH⁻ ions.

Buffers in the Blood

Blood pH must remain between 7.35 and 7.45. One buffer in the blood is HCO₃ ions:

$$
CO2(aq) + H2O(l) \stackrel{?}{=} H+(aq) + HCO3(aq)
$$

If **pH increases** (hydrogen ion concentration decreases), the position of **equilibrium will shift to the right** to increase the concentration of hydrogen ions. If pH falls (hydrogen ion concentration increases), the position of equilibrium will shift to the left to remove the added H^* ions.

Buffers can also be used to check and **adjust the readings on pH meters**. A pH probe would be inserted into a buffer solution with a known pH then the pH meter would be adjusted to match the known value.

Buffer Calculations

A buffer has the **general equation**: HA(aq) ⇋ H⁺ (aq) + A- (aq). This means **K^a** can be written like this:

$$
K_a = \frac{[H^+][A^-]}{[HA]}
$$

OOOO PMTEducation

 \bullet www.pmt.education

For **weak acids**, two assumptions were made:

- 1) [H⁺] = [A⁻] this is no longer true as the buffer contains a much larger concentration of A⁻. The concentration of A⁻ is assumed to be the same as the concentration of the salt as the number of A⁻ ions coming from HA is tiny (as it is a weak acid).
- 2) [HA] at equilibrium = [HA] at the start this is assumed for the buffer because the added A- ions from the salt push the equilibrium to the left meaning there is **little dissociation of the acid.**

Given the value of K_{a} , the [H⁺] can be calculated by rearranging the equation. This can then be used to work out the pH: $pH = -log_{10}[H^+]$.

The **proportion of acid and conjugate base** (from the salt) present in the buffer can also be calculated when given K_{a} and pH:

- 1) Use pH to calculate the concentration of hydrogen ions, $[H^+] = 10^{-pt}$
- 2) Rearrange K_{a} and substitute in known values to find the proportion of weak acid and conjugate acid at equilibrium:

$$
\frac{[A^*]}{[HA]} = \frac{K_a}{[H^*]}
$$

The same calculations can be completed for alkaline buffers such as ammonia. In this case, HA would be NH_4^+ and A⁻ would be NH_3 .

Solubility Product, Ksp

The solubility constant indicates **how much a compound dissociates in water.** It only applies to saturated compounds. The higher the value, the more soluble the compound.

When an ionic solid dissolves in water, an **equilibrium** is established between the ions and the compound. E.g. BaSO₄(s) $\stackrel{<}{\sigma}$ Ba²⁺(aq) + SO₄²⁻(aq)

The equilibrium constant is called the **solubility product**:

$$
K_{\rm sp} = [Ba^{2+}][SO_4^{2-}]
$$

BaSO₄(s) isn't present in the equilibrium constant equation because it is a solid in a **heterogeneous equilibrium**. The number of molecules of each substance is used in the K_{sp} equation in the same way as in other equilibrium constant equations (e.g. if there were 2Ca²⁺(aq) in the equilibrium equation, K_{sp} would contain [Ca²⁺]²).

OOOO PMTEducation

 \bullet www.pmt.education

The **units** for solubility products are worked out using the equation:

- For BaSO₄: $K_{sp} = [Ba^{2+}][SO_4^{2-}]$ (mol dm⁻³) x (mol dm⁻³) $=$ mol² dm⁻⁶
- For $Ca_3(PO_4)_2$: $K_{sp} = [Ca^{2+}]^3[PO_4^{3-}]^2$ (mol dm⁻³)³ x (mol dm⁻³)² $=$ mol⁵ dm⁻¹⁵

The solubility product for a compound will always be **the same under the same conditions** provided that the solution is saturated. If two compounds are mixed together, a precipitate will only form if the ionic concentrations give a value greater than the solubility product (otherwise, the solution won't be saturated).

Example calculations:

- The solubility of magnesium hydroxide, Mg(OH)₂, at 298 K is 1.71 x 10⁻⁴ mol dm⁻³. $Mg(OH)_{2}(s) \stackrel{?}{=} Mg^{2+}(aq) + 2OH^{-}(aq)$ The concentration of Mg(OH)₂ is 1.71 x 10⁻⁴ mol dm⁻³, so using the equation: $[Ma^{2+}] = 1.71 \times 10^{-4}$ mol dm⁻³
	- [OH] = 2 x (1.71 x 10⁻⁴) = 3.42 x 10⁻⁴ mol dm⁻³

$$
K_{sp} = [Mg^{2+}][OH^2]
$$

- $=$ (1.71 x 10⁻⁴) x (3.42 x 10⁻⁴)²
- $= 2.00 \times 10^{-11}$ mol³ dm⁻⁹
- The solubility product of barium sulfate, BaSO₄, at 298K is 1.10 x 10⁻¹⁰ mol² dm⁻⁶. $BaSO_{4}(s) \stackrel{?}{=} Ba^{2+}(aq) + SO_{4}^{2-}(aq)$

Using the equation (where y is the unknown solubility):

- $[Ba^{2+}] = y$ - $[SO_4^2] = y$ $K_{sp} = [Ba^{2+}][SO_4^{2-}]$ 1.10 x 10^{-10} = y x y 1.10 \times 10⁻¹⁰ = y^2 $y = \sqrt{(1.10 \times 10^{-10})} = 1.05 \times 10^{-5}$ mol dm⁻³

Common Ion Effect

The common ion effect occurs when you have a **sparingly soluble substance**. The substance will be **less soluble in a solution containing any ions it has in common**.

For example, if sodium chloride (NaCl) was added to a saturated solution of PbCl₂, according to **Le Chatelier's principle**, the position of equilibrium (PbCl² (s) ⇋ Pb2+(aq) + 2Cl- (aq)) would be affected. This is because the **concentration of Cl- ions would increase** so to counteract the increased concentration of chloride ions so the position of equilibrium shifts to the left to form more PbCl₂(s). This also means that the solubility of PbCl₂(s) will **decrease** so the concentration of lead(II) ions will decrease.

OOOO PMTEducation

Example calculation:

PbCl₂(s) is dissolved in a solution of 0.100 mol dm³ sodium chloride solution. The solubility product of PbCl $_2$ is 1.7 x 10⁻⁵ mol 3 dm 9 $[Pb^{2+}] = y \text{ mol dm}^{-3}$ Assume the concentration of chloride ions is the same as the concentration of sodium chloride: $\text{[Cl]} = 0.100 \text{ mol dm}^3$ $K_{sp} = [Pb^{2+}][Cl^{-}]^{2}$ $=$ y x $(0.100)^2$ $1.7 \times 10^{-5} = 0.0100 \times y$ $y = 1.7 \times 10^{-5} \div 0.0100 = 1.7 \times 10^{-3}$ mol dm⁻³ The [Pb²⁺] when PbCl₂(s) dissolves in water is 0.0162 mol dm⁻³. This decreases by a scale factor of 10 to 0.0017 mol dm⁻³ when PbCl₂(s) is dissolved in 0.100 mol dm⁻³ NaCl solution.

Partition Coefficients, K_{pc}

Two **immiscible** liquids will form two separate layers in a separating funnel with the **less dense layer on top**. If substance X is dissolved in both of these liquids, it may be more soluble in one layer than another. A **dynamic equilibrium** will be set up at the boundary between the two liquids:

 $X(in$ more dense liquid) $\leq X(in$ less dense liquid)

 $K_{\text{pc}} = [X \text{ in less dense liquid}]$ [X in more dense liquid]

There are **no units** for the partition coefficient because any units cancel out.

Example calculation:

• 1.00g of X is in 100cm³ of water and 5cm³ of ether. $K_{pc} = 40$. m is mass of X dissolved in ether: Concentration of X in ether = $m/5$ g cm⁻³ Concentration of X in water = $(1.00 - m)/100$ g cm⁻³

$$
K_{\text{pc}} = \frac{[X \text{ in less dense liquid}]}{[X \text{ in more dense liquid}]}
$$

40 = $\frac{m/5}{(1.00 - m)/100}$
 $\frac{40(1.00 - m)}{100} = \frac{m}{5}$
200 - 200m = 100m
300m = 200
m = 0.67g

OOOO PMTEducation

 \bullet www.pmt.education

BY NC ND \bigcirc