

CAIE Chemistry A-level

31: Halogen Compounds

(A-level only)

Notes

This work by PMT Education is licensed under CC BY-NC-ND 4.0

www.pmt.education

Halogen Compounds

Substitution with Chlorine

The reaction of benzene with chlorine requires an aluminium chloride catalyst.

$$\mathrm{C_6H_6} + \mathrm{Cl_2} \rightarrow \mathrm{C_6H_5CI} + \mathrm{HCI}$$

The mechanism for the electrophilic substitution reaction:

Stage 1: The aluminium chloride catalyst generates the electrophile from chlorine.

$$Cl_2 + AlCl_3 \rightarrow AlCl_4^- + Cl^+$$

Stage 2: The electrophile reacts with the benzene molecule.

Stage 3: The hydrogen ion reacts with the AlCl₄⁻, reforming the AlCl₃ catalyst. AlCl₄⁻ + H⁺ \rightarrow AlCl₃ + HCl

Difference in Reactivity between Chlorobenzene and Chloroalkane

Chlorobenzene is much less reactive than chloroalkane. This is because the C-CI bond in chlorobenzene is much stronger than in an halogenoalkane.

The aromatic C-CI bond is stronger due to one of the lone pairs on the chlorine atom interacting with the delocalised electron system, strengthening the bond. For reactions, like nucleophilic substitution, the C-CI bond would require breaking. Since the chlorobenzene bond requires more energy to break, chlorobenzene is less reactive.

