

[AQA A2 Paper 1 2017]

The acid dissociation constant, Ka, for ethanoic acid is given by the expression

$$Ka = [CH3COO-][H+]$$
[CH3COOH]

The value of Ka for ethanoic acid is 1.74 x 10⁻⁵ moldm⁻³ at 25 °C A buffer solution with a pH of 3.87 was prepared using ethanoic acid and sodium ethanoate. In the buffer solution, the concentration of ethanoate ions was 0.136 moldm-3.

 Calculate the concentration of the ethanoic acid in the buffer solution. Give your answer to three significant figures.

@ (alculate [H+] ions from the solution pH:

$$[H^{+}] = 10^{-3.87}$$

$$\Rightarrow 1.3489 \times 10^{-4} \text{ moldm}^{-3}$$

3 Sub in values to find [CH3COOH]:

$$[CH_{3}COOH] = \frac{0.136 \times 1.3489 \times 10^{-4}}{1.74 \times 10^{-5}}$$

= 1.0543...

> 1.05 moldm-3

 b) In a different buffer solution, the concentration of ethanoic acid was 0.260 moldm⁻³ and the concentration of ethanoate ions was 0.121 moldm⁻³.

A 7.00×10^{-3} mol sample of sodium hydroxide was added to 500 cm³ of this buffer solution.

Calculate the pH of the buffer solution after the sodium hydroxide was added. Give your answer to two decimal places.

① Write an equation for the dissociation: question like this can be worth up to CH3COOT + H+ 6 marks.

3 Start a table with the initial moles of each species:

-	CH3COOH =	= CH3C00-	+ H+
initial moles	0.130	0.0605	halve the concentrations to find moles
			in 500cm3

3) Add the modes added to the solution: {moles=conc. x ve

	CH3COOH =	→ CH ₂ CCOO ⁻	+ H+
initial moles	0.130	0.0605	
moles	↓7×10 ⁻³	↑7×10 ⁻³	↓ 7×10 ⁻³
	7	K	1

this is always the same as the change in hydrogen ions. opposite as they react in a neutralisation reaction

PINT - resources - tuition - courses

@ Calculate the new motes of each species:

	CH3COOH ← H+			
initial moles	0.130	0.0605		
moles added	↓7×10-3	17×10-3	↓7×10 ⁻³	
new	0.123	0.0675		

B Rearrange the ka expression for [H+] ions:

@ Sub in the values to find [Ht] ions:

$$[H^{\dagger}] = \frac{1.74 \times 10^{-5} \times 0.123}{0.0675}$$

= 3.1706 ... x10-5 moldm-3

- keep as many sig. figs as possible.

@ Calculate pH of the buffer:

= 4.498...

