

[AQA A2 Specimen Paper 1 2015]

Figure 1 shows a graph of data obtained by a student when a solution of sodium hydroxide was added to a solution of ammonium chloride. The pH of the reaction mixture was measured initially and after each addition of the sodium hydroxide solution.

Figure 1



The pH at the end point of this reaction is 11.8

 a) Use this pH value and Kw, 10<sup>-14</sup> mol<sup>2</sup>dm<sup>-6</sup>, to calculate the concentration of hydroxide ions at the end point of the reaction.

①Calculate [H+] ions:  

$$\Rightarrow 10^{-11.8} = 1.58 \times 10^{-12}$$



@ Use ku to find [OH] ions:

$$[OH^{-}] = \frac{K\omega}{[H^{+}]}$$

$$= \frac{10^{-14}}{1.58 \times 10^{-12}}$$

$$= (.33, 10^{-3})$$



= 6.33 × 10-3 moldm-3





The expression for the acid dissociation constant for aqueous ammonium ions is:

$$Ka = [NH_3][H^+]$$
  
 $[NH_4^+]$ 

The initial concentration of the ammonium chloride solution was 2.00 moldm-3.

- Use the pH of this solution, before any sodium hydroxide had been added, to calculate a value for Ka.
  - (1) Rewrite the Ka expression:

$$k_{a} = \frac{\left[H^{+}\right]^{2}}{\left[NH_{4}^{+}\right]}$$

$$Ka = \frac{[H^{+}]^{2}}{[NH_{4}^{+}]}$$
 At this point, [NH3] is equal to [H+].

@ Use the graph to find the initial pH:

3) Use pH to gind [H+] ions:

$$[H^{+}] = 10^{-4.6}$$
  
=  $2.51 \times 10^{-5}$ 

4 Sub these values into the ka expression:

$$K_{a} = \frac{(2.51 \times 10^{-5})^{2}}{2.00}$$

$$= 3.15 \times 10^{-10}$$

6 Find the units of ka:

$$\frac{\text{(moldm-3)}^2}{\text{moldm-3}} \Rightarrow \frac{\text{moldm-3}}{\text{//}}$$



A solution contains equal concentrations of ammonia and ammonium ions.

- Use your value of Ka from part (b) to calculate the pH of this solution.
  - Drewrite the Ka expression:

@Find the value of [H+] ions:

3 Use [H+] ions to gind pH:



pH valves are always given to 2d.p.