

[AQA A2 Paper 2 2017]

A series of experiments is carried out with compounds C and D. Using the data obtained, the rate equation for the reaction between the two compounds is deduced to be:

Rate =
$$k[C][D]$$

In one experiment at 25 °C, the initial rate of reaction is 3.1×10^{-3} moldm⁻³s⁻¹ when the initial concentration of C is 0.48moldm⁻³ and the initial concentration of D is 0.23moldm⁻³.

- Calculate a value for the rate constant at this temperature and give its units.
 - OReassange the rute equation for k:

Rate =
$$K[C][D]$$

 $\Rightarrow K = Rate$
 $[C][D]$

@ Sub in values to find k:

$$K = \frac{3 \cdot 1 \times 10^{-3}}{0.48 \times 0.23}$$

$$\Rightarrow 2.8 \times 10^{-2}$$

3) Use the rearranged equation to find the units of k:

$$\frac{\text{moldm}^{3}s^{-1}}{\text{(moldm}^{-3)}(\text{moldm}^{-3})} \Rightarrow \frac{\text{mol}^{-1}\text{dm}^{3}s^{-1}}{\text{moldm}^{-3}}$$

cancel units

 An equation that relates the rate constant, k, to the activation energy, Ea, and the temperature, T, is

$$lnk = \underline{-Ea} + lnA$$
RT

Use this equation and your answer from part (a) to calculate a value, in kJ mol⁻¹, for the activation energy of this reaction at 25 °C.

For this reaction In A = 16.9

The gas constant R = 8.31 J K⁻¹mol⁻¹

O Use part (a) value to find Ink:

$$\ln k = \ln |2.8 \times 10^{-2}|$$
$$= -3.58$$

3 Rearrange equation for Ea:

$$\ln k = \frac{-Ea}{RT} + \ln A$$

Temperature
in kelvin
 $\Rightarrow -Ea = RT(\ln k - \ln A)$
 $(+273)$

3 Sub in values to find Ea:

$$-Ea = 8.31 \times 298 (-3.58 - 16.9)$$
$$= -50716.2...$$

the question states the required units as k 3 mol-!

