

[AQA A2 Specimen Paper 1 2015]

A 5.00 g sample of potassium chloride was added to 50.0 g of water initially at 20.0 °C. The mixture was stirred and as the potassium chloride dissolved, the temperature of the solution decreased. The temperature of the water decreased to 14.6 °C.

 a) Calculate a value, in kJmol⁻¹, for the enthalpy of solution of potassium chloride.

(You should assume that only the 50.0 g of water changes in temperature and that the specific heat capacity of water is $4.18 \ JK^{-1}g^{-1}$.)

Ocalculate the temperature change:

2 Calculate the energy taken in:

$$9 = 50 \times 4.18 \times 5.4$$

3) Calculate the moles of KCI that reacts:

moles =
$$5.00$$

(391.1+35.5)
= 0.0670 moles

1 Use these values to find the enthalpy change per mole:

$$\Delta H_{\text{soln.}} = \frac{+1128.6}{0.0670}$$

= +16839 (5mol-1)

the reaction is endothermic so DH is a positive value.

The enthalpy of solution of calcium chloride is –82.9 kJmol⁻¹. The enthalpies of hydration for calcium ions and chloride ions are –1650 and –364 kJmol⁻¹, respectively.

 Use these values to calculate a value for the lattice enthalpy of dissociation of calcium chloride.

Oset up a Hess's Law diagram:

Cally
$$-82.9$$
 $Ca_{(ag)}^{2+} + 2Cl_{(ag)}^{-}$

Allow
$$Ca_{(ag)}^{2+} + 2Cl_{(ag)}^{-}$$

$$Ca_{(ag)}^{2+} + 2Cl_{(ag)}^{-}$$

3 calculate the total enthalpy of hydration:

$$\Delta H_{\text{hyd.}} = -1650 + 2(-364)$$

= -2378 K5mol-1

3 Use this to find lattice dissociation enthalpy:

breat the arrows as vectors.

