

AQA Chemistry A-level

3.3.1: Introduction to Organic Chemistry Detailed Notes

🕟 www.pmt.education

▶ Image: PMTEducation

3.3.1.1 - Nomenclature

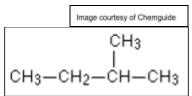
There are different way of writing and representing organic compounds:

1. Empirical Formula

- The simplest whole number ratio of atoms of each element in a compound.

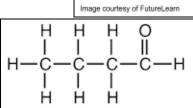
2. Molecular Formula

- The true number of atoms of each element in a compound.


3. General Formula

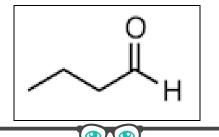
- All members of a homologous organic series follow the general formula. *Example:*

Alkanes =
$$C_n H_{2n+2}$$


4. Structural Formula

- Shows the structural arrangement of atoms within a molecule. *Example:*

5. Displayed Formula


- Shows every atom and every bond in an organic compound. *Example:*

6. Skeletal Formula

- Shows only the bonds in a compound and any non-carbon atoms.
- Vertices are carbon atoms.

- Hydrogen is assumed to be bonded to them unless stated otherwise. *Example:*

Homologous Series

Organic compounds are often part of a **homologous series**, in which all members follow a **general formula** and react in a very similar way. Each consecutive member **differs by** CH_2 and there is an **increase in boiling points** as chain length increases.

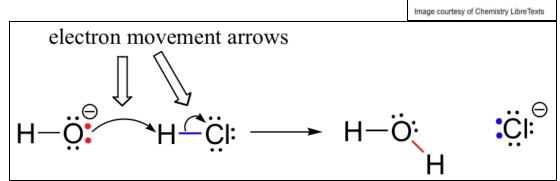

Example:

		Image courtesy	mage courtesy of DP Chemistry	
TABLE 25.1	First Several Members of the Straight-Chain Alkane Series			
Molecular Formula	Condensed Structural Formula	Name	Boiling Point (°C)	
CH ₄	CH4	Methane	-161	
C_2H_6	CH ₃ CH ₃	Ethane	- 89	
C_3H_8	CH ₃ CH ₂ CH ₃	Propane	- 44	
C4H10	CH ₃ CH ₂ CH ₂ CH ₃	Butane	-0.5	
C5H12	CH ₃ CH ₂ CH ₂ CH ₂ CH ₃	Pentane	36	
C6H14	CH3CH2CH2CH2CH2CH3	Hexane	68	
C ₇ H ₁₆	CH3CH2CH2CH2CH2CH2CH3	Heptane	98	
C8H18	CH3CH2CH2CH2CH2CH2CH3	Octane	125	
C ₉ H ₂₀	CH3CH2CH2CH2CH2CH2CH2CH2CH3	Nonane	151	
C10H22	CH3CH2CH2CH2CH2CH2CH2CH2CH2CH3	Decane	174	

3.3.1.2 - Reaction Mechanisms

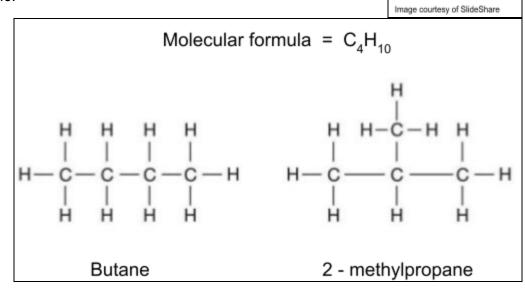
These show the movement of electrons within a reaction, shown with curly arrows.

Example:

▶ Image: PMTEducation

Mechanisms are used to show the reactions of organic compounds.

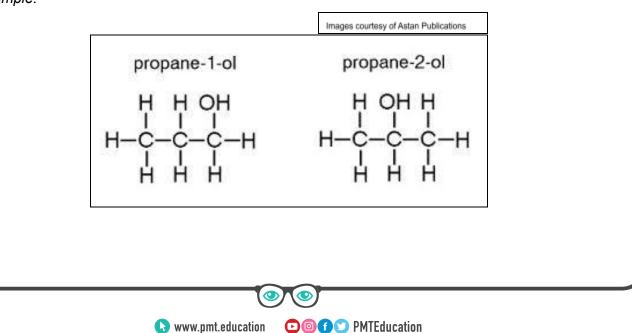
🕟 www.pmt.education


3.3.1.3 - Isomerism

Isomers are molecules with the **same molecular formula** but a **different arrangement** of atoms within the molecule.

Structural Isomers

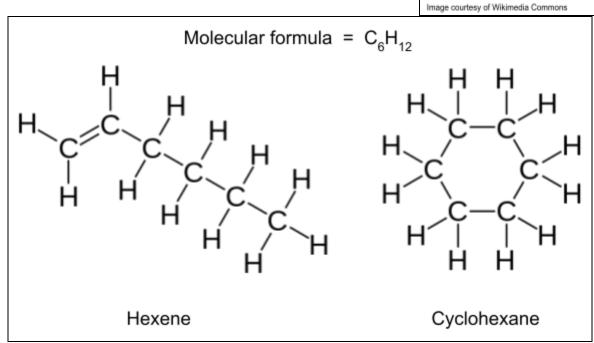
These have a **different structural arrangement** of atoms. They can be **straight** chains or **branched** chains but will have the same molecular formula.


Example:

Position Isomers

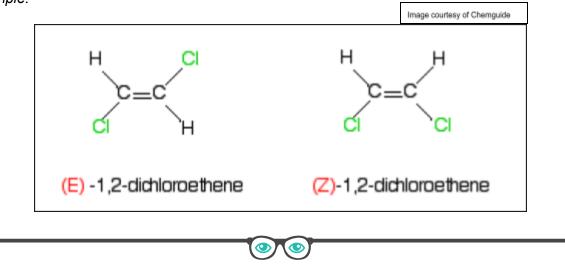
These have the **functional group** of the molecule in a **different position** of the carbon chain.

Example:



Functional Group Isomers

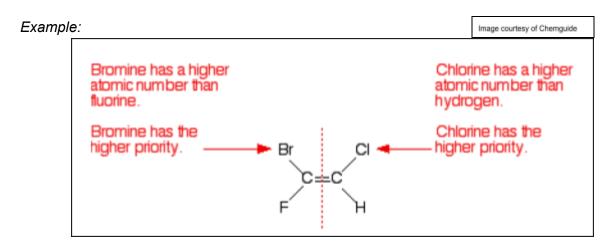
These have a different arrangement of the same molecular formula so that the molecule has a **different functional group**.


Example:

Stereoisomers

These have a different spatial arrangement. A type of stereoisomerism is **E-Z isomerism**, where limited rotation around a double carbon bond means that functional groups can either be 'together' or 'apart'. The *E* isomer (german for entgegen meaning apart) has functional groups on opposite sides. The *Z* isomer (german for zusammen meaning together) has functional groups together on the same side of the double bond.

Example:



www.pmt.education

Cahn-Ingold-Prelog (CIP) Priority Rules

There is a **priority of different groups** in molecules that can display E-Z isomerism. The first atom which is directly bonded to the carbon with the double bond with the **higher atomic number** is given the **higher priority**. These groups are used to determine if it is the E or Z isomer.

Therefore this molecule is the Z isomer as the highest priority atoms are on the same side.

How to determine a more complicated E/Z isomers

• Step 1: Apply the CIP priority rules

• Look at R1 and R3:

■ Carbon is the **first atom** attached to the C=C bond, on the left hand side

- Look at R2 and R4:
 - Carbon is the first atom attached to the C=C bond, on the right hand side
- This means that we cannot deduce if compound A is an *E* or *Z* isomer by applying the CIP priority rules to the first atom attached to the C=C bond
 - Therefore, we now have to look at the second atoms attached

• Step 2: Apply the CIP priority rules (using the second atoms)

- Look again at R1 and R3:
 - The second atoms attached to R1 are hydrogens and bromine
 - The second atoms attached to R3 are hydrogens and another carbon
 - We can ignore the hydrogens as both R groups have hydrogens
 - Bromine has a higher atomic number than carbon, so bromine is the higher priority
 - Therefore, the CH2Br group has priority over the CH3CH2 group
- Look again at R2 and R4:
 - The second atoms attached to R2 are hydrogens and chlorine
 - The second atoms attached to R4 are hydrogens
 - Chlorine has a higher atomic number than hydrogen, so chlorine is the higher priority
 - Therefore, the CH2CI group has priority over the CH3 group

• Step 3: Deduce E or Z

- In compound A, the two highest priority groups are on the same side (both above) the C=C bond
 - Therefore, compound A is the **Z** isomer

www.pmt.education