

SUMMARY OF REACTION PATHWAYS IN ORGANIC CHEMISTRY

You need to know the equations, conditions, reagents and type of reaction for all these reactions.

You need to know the mechanism for some of them.

1. Alkane \rightarrow chloroalkane

reagents: Cl_2 conditions: UV light mechanism: free radical substitution equation: $RH + Cl_2 \rightarrow RCl + HCl$

2. Alkene → polyalkene Conditions: low T, high p. Equation:

Type of reaction: addition polymerisation (free radical)

3. Alkene \rightarrow bromoalkane

Reagent: HX(g) Conditions: room T Equation:

Type of reaction: electrophilic addition

4. Alkene → dibromoalkane

Reagent: Br₂ in water or in an organic solvent Conditions: room T Equation:

Mechanism: electrophilic addition

5. Alkene \rightarrow alkylhydrogensulphate

Reagent: concentrated sulphuric acid Conditions: cold Equation:

Mechanism: electrophilic addition

6. Alkylhydrogensulphate \rightarrow alcohol

Reagent: water Conditions: warm Equation:

Type of reaction: hydrolysis

7. Alkene \rightarrow alcohol

Reagent: steam Conditions: 300 °C, 60 atm, H₃PO₄ catalyst Equation:

Type of reaction: hydration

8. Haloalkane \rightarrow alcohol

Reagent: NaOH(aq) or KOH(aq) Conditions: warm under reflux Equation: $R-X + OH^- \rightarrow R-OH + X^-$ Type of reaction: nucleophilic substitution

9. Haloalkane \rightarrow nitrile

Reagent: KCN in aqueous ethanol Conditions: boil under reflux Equation: $R-X + CN^- \rightarrow R-CN + X^-$ Type of reaction: nucleophilic substitution

10. Haloalkane \rightarrow Amine

Reagent: ammonia in ethanol in a sealed tube Conditions: heat Equation: $R-X + 2NH_3 \rightarrow R-NH_2 + NH_4X$ Type of reaction: nucleophilic substitution

11. Haloalkane \rightarrow alkene

Reagent: KOH in ethanol Conditions: heat Equation:

Type of reaction: elimination

12. Primary alcohol \rightarrow aldehyde

Reagent: potassium dichromate and dilute sulphuric acid Conditions: warm, distillation Equation: $RCH_2OH + [O] \rightarrow RCHO + H_2O$ Type of reaction: mild oxidation

13. Secondary alcohol \rightarrow ketone

Reagent: potassium dichromate and dilute sulphuric acid Conditions: heat, distillation Equation: $R_1CH(OH)R_2 + [O] \rightarrow R_1COR_2 + H_2O$ Type of reaction: oxidation

14. aldehyde \rightarrow carboxylic acid

Reagent: potassium dichromate and dilute sulphuric acid Conditions: heat, reflux Equation: R-CHO + $[O] \rightarrow$ R-COOH Type of reaction: oxidation

15. Alcohols \rightarrow alkenes

Reagent: concentrated sulphuric acid Conditions: heat Equation:

Type of reaction: elimination

16. glucose \rightarrow ethanol

reagent: yeast conditions: 35 - 55 °C, no air equation: $C_6H_{12}O_6 \rightarrow 2C_2H_5OH + 2CO_2$ type of reaction: fermentation