Questions Q1. The graph in Figure 4 shows the volume of oxygen an athlete absorbs at different running speeds. Figure 4 | (i) De | scri | ribe the trend shown in Figure 4. | | |------------------|--------|--|------------------------------| | | | | (2) | | | | | | | | | | | | | | | | | | ••••• | | | | | | | | | (ii) W
per ho | | ch uses more oxygen when the running speed of the at ? | hlete changes from 4 to 6 km | | | | | (1) | | <u> </u> | A
B | J 1 | | | 23 | C | decreasing aerobic respiration | | | | D | decreasing anaerobic respiration | | | (iii) E | xpla | lain why the athlete produces lactic acid when running | at 14 km per hour. | | | | | (2) | T7 | otal for question = 5 marks) | #### Q2. Figure 5 shows equipment used to investigate the rate of respiration in maggots. Figure 5 As the maggots respire, the drop of coloured liquid moves towards the test tube. Figure 6 shows the position of the drop of coloured liquid after ten minutes. Figure 6 (i) Use information from Figures 5 and 6 to calculate the mean rate of respiration of the maggots in mm per minute. (2) | mm per minut | e | |---|----| | (ii) Describe a control for this investigation. | | | | 2) | | | | | | | | | | | | | | | | | | | (Total for question = 4 marks) | Q3. | |---| | A human body has 5 dm ³ of blood. | | At rest 20% of the blood travels to the muscles. | | During exercise 60% of the blood travels to the muscles. | | (i) Calculate the volume of blood travelling to the muscles during exercise. | | (2) | | | | | | | | dm³ | | (ii) Explain one reason why there is an increase in blood flow to muscles during exercise. | | (2) | | | | | | | | | (Total for question = 4 marks) #### Q4. Exercise causes changes in the circulation of the blood. In an investigation, the change in blood flow to different parts of the body during exercise was measured. All the volunteers used in the study were healthy females of the same age. Figure 13 shows the results of this investigation. Figure 13 (i) During exercise, the blood flow to the stomach changes. Calculate the percentage change in blood flow to the stomach in response to exercise. Give your answer to the nearest whole number (3) | | | . % | |------|---|-----| | (ii) | Suggest two other variables that should be controlled in this investigation. | | | | | (2) | | 1 | | | | 2 | | | # **Edexcel Biology GCSE - Respiration** | (iii) Explain the changes in blood flow, shown in Figure 13, that are caused by exercise | | |--|-----| | | (6) | ••• | | | ••• | | | | | | | | | | (Total for question = 11 marks) (1) Q5. Answer the question with a cross in the box you think is correct \boxtimes . If you change your mind about an answer, put a line through the box \boxtimes and then mark your new answer with a cross \boxtimes . Humans breathe faster when they exercise. (i) Which **two** changes allow the rate of respiration in the muscle to increase? amount of glucose heart rate delivered to the muscles A 1 increases increases 8 В increases decreases 1 C decreases increases decreases 1 D decreases (ii) Figure 11 shows breathing data for a human at rest and when running at 5 metres per second on a running machine. | activity | mean number
of breaths
per minute | mean volume of
air in one breath
in dm³ | mean volume
of air breathed
in dm³ per minute | |--------------------------------|---|---|---| | at rest | 5.0 | 0.8 | 4.0 | | running at 5 metres per second | 24.7 | 2.7 | ? | Figure 11 Calculate the mean volume of air breathed per minute when running at 5 metres per second. Give your answer to one decimal place. (2) dm³ per minute ## **Edexcel Biology GCSE - Respiration** | (iii) Devise an investigation to compare the mean number of breaths per minute for men, with the mean number of breaths per minute for women, when running at 5 metres per second on a running machine. | | |---|-----| | | (4) | | | i | | | 1 | (Total for question = 7 mar | ks) | Q6. Figure 10 shows the estimated blood flow through some parts of the body when a person is at rest and during exercise. | | estimated rate of blood flow in cm³ per minute | | | |---------------------------------|--|-----------------|--| | part of the body | at rest | during exercise | | | brain | 750 | 748 | | | heart muscle | 350 | 1 150 | | | digestive system | 2500 | 1 200 | | | other muscles | 1 200 | 14 500 | | | all other organs (except lungs) | 1423 | 1420 | | Figure 10 Compare the rate of blood flow through the body when this person is at rest and during | exercise. | | |-----------|-----| | | (3) | | | | | | | | | | | | | | | • | | | | | | | | | | | | | | | | (Total for question = 3 marks) Q7. Figure 2 shows alveoli from a healthy lung. Figure 2 Smoking can cause a condition called emphysema. Figure 3 shows alveoli from a person with emphysema. Figure 3 Use words from the box to complete the following sentences. breathing diffusion larger osmosis smaller thicker The alveoli from the person with emphysema have a surface area than the alveoli from a healthy lung. The surface area of the alveoli will affect how much oxygen moves into the blood by the process of (Total for question = 2 marks) (2) Q8. Figure 11 shows the movement of molecules across a membrane. Figure 11 | Describe how Figure 11 illustrates movement of molecules across a membrane. | | |---|-----| | | (2) | | | | | | | | | | | | ı | | | ı | | | ı | | | | (Total for question = 2 marks) #### Q9. A scientist investigated the relationship between exercise and the ability to run at 3 metres per second for 20 minutes. The scientist collected data from six groups of people. Each group exercised for a different number of hours per week for six months. There were 100 people in each group. Figure 7 shows their results. | group | number of hours of exercise per week | number of people who could
run at 3 metres per second
for 20 minutes | |-------|--------------------------------------|--| | Α | 0 | 9 | | В | 2 | 20 | | C | 4 | 33 | | D | 6 | 52 | | E | 8 | 61 | | F | 10 | 62 | Figure 7 | (i) Describe the relationship shown by this data. | | |--|-----| | | (2) | | | | | | | | | | | | • | | | | | | | | (ii) Explain why some people's leg muscles tired quickly and developed cramp when they were running. | ′ | | | (3) | (Total for question = 5 marks) #### Q10. Figure 10 shows alveoli from a lung. Figure 10 | (i) | Expla | ain why these alveoli have the internal structure shown in Figure 10. | | |------|-------|---|-----| | | | | (3) | (ii) | How | does oxygen move across the alveolar membrane into the capillary? | | | | | | (1) | | | Α | by osmosis | | | | В | by active transport | | | 1 | С | by diffusion | | | × | D | by respiration | | (Total for question = 4 marks) | $\boldsymbol{\sim}$ | 4 | 4 | | |---------------------|---|---|--| | u | ı | | | | Explain how alveoli in human lungs are adapted for gas exchange. | | | | | |--|-----|--|--|--| | Include the names of the gases that are being exchanged. | | | | | | | (6) | (Total for question = 6 marks) #### Q12. | explain, using Fick's law, the factors that affect the diffusion rate of molecules into and out c
ells. |)f | |--|----| | | 3) | (Total for question = 6 marks) #### Q13. Figure 10 shows the estimated blood flow through some parts of the body when a person is at rest and during exercise. | | estimated rate of blood flow in cm³ per minute | | | |---------------------------------|--|------------------------|--| | part of the body | at rest | during exercise
748 | | | brain | 750 | | | | heart muscle | 350 | 1 150 | | | digestive system | 2500 | 1 200 | | | other muscles | 1 200 | 14 500 | | | all other organs (except lungs) | 1423 | 1 420 | | Figure 10 | Explain why there is a change in the rate of blood flow through the digestive system during exercise. | |---| | (2) | | | | | | | | | | (Total for question = 2 marks) | | (| | | | Q14. | | Explain why cellular respiration is essential for living organisms. | | (2) | | | | | | | | | | (Total for question = 2 marks) | #### Q15. A student investigated respiration in three different organisms. Red hydrogencarbonate indicator was placed in each of three test tubes. Gauze was placed in each test tube to hold the organisms. In test tube 1 the student placed four germinating peas. In test tube 2 the student placed four dried peas. In test tube 3 the student placed four mealworms. Bungs were added to each of the test tubes. The three test tubes were left for one hour. The equipment used is shown in Figure 16. Figure 16 Hydrogencarbonate indicator changes from red to yellow when more carbon dioxide is present. The results for this investigation are shown in Figure 17. | organisms | colour of hydrogencarbonate indicator | |------------------|---------------------------------------| | germinating peas | yellow | | dried peas | red | | mealworms | yellow | Figure 17 | (i)
pe | | ain why the result for the germinating peas is different from the result for the dried | | |-----------|--------|--|-----| | | | | (2) | | ••• | | | | | ••• | | | | | ••• | | | | | | | | | | | | | | | (ii) | How | was the carbon dioxide produced in this investigation? | (1) | | | Α | by photosynthesis | (1) | | | В | when glucose is broken down in the presence of oxygen | | | | С | when glucose is broken down in the absence of oxygen | | | | D | by the reaction between oxygen and water | | | | | | | | | | (Total for question = 3 mark | ks) | | | | ` . | , | | | | | | | Q1 | 6. | | | | Aft | er hig | h intensity exercise, the pH of muscles can decrease from pH 7.0 to pH 6.3. | | | Ex | plain | this change in pH. | | | | | | (2) | | | | | | | ••• | (Total for question = 2 marks) Q17. Answer the question with a cross in the box you think is correct \boxtimes . If you change your mind about an answer, put a line through the box \boxtimes and then mark your new answer with a cross \boxtimes . (i) Which row of the table shows the type or types of respiration that use glucose? (1) | | | aerobic respiration | anaerobic respiration | |-------------|---|---------------------|-----------------------| | \times | A | yes | yes | | \boxtimes | В | yes | no | | \boxtimes | C | no | yes | | \square | D | no | no | (ii) A scientist measured the rate of respiration in a person when sleeping and then running at different speeds. Figure 12 shows the results. | activity | speed in km per hour | respiration rate in kJ per minute | |-----------------|----------------------|-----------------------------------| | sleeping | 0 | 3 | | running slowly | 8 | 90 | | running quickly | 12 | 130 | Figure 12 | (Total for question = 4 m | | |---------------------------------------|-----| (3) | | Explain the trend shown in Figure 12. | | | \sim | A | 0 | |--------|---|----| | u | 1 | o. | | Blo | odw | orms in a pond indicate that the water is polluted. | | |--------------|-------------|--|-----| | (i) | Whi | ch species also indicates that the water is polluted? | | | | Α | fertiliser | (1) | | | В | lichen | | | | С | stonefly | | | Š | D | sludgeworm | | | | Give | odworms have a high level of haemoglobin in their blood. e a reason why this helps them survive in polluted water. | (1) | | (iii)
1 . | Caı
Give | rbon dioxide diffuses from the body of the bloodworm into the water. e two factors that affect the rate of diffusion. | (2) | | | | | | | | | (Total for question = 4 mark | s) | | Q1 | 9. | | | | WI | nilst r | running, the leg muscles of an athlete tightened up, causing cramp. | | | Na | me t | he product of anaerobic respiration that can cause cramp. | (1) | | | | (Total for question = 1 mar | ·k) | #### Q20. Answer the question with a cross in the box you think is correct \boxtimes . If you change your mind about an answer, put a line through the box \boxtimes and then mark your new answer with a cross \boxtimes . Figure 10 shows a single-celled pond organism (Amoeba proteus). Figure 10 (i) Which row of the table allows the net diffusion of oxygen into Amoeba proteus? concentration of oxygen in concentration of oxygen in water in ppm Amoeba proteus in ppm 5 4 A 4 4 1 В 10 10 1 C 4 10 ÞŽΨ D 10 4 (ii) Amoeba proteus uses oxygen for aerobic respiration. Complete the equation for aerobic respiration. (Total for question = 2 marks) (1) (1) #### Q21. A student investigated respiration in three different organisms. Red hydrogencarbonate indicator was placed in each of three test tubes. Gauze was placed in each test tube to hold the organisms. In test tube 1 the student placed four germinating peas. In test tube 2 the student placed four dried peas. In test tube 3 the student placed four mealworms. Bungs were added to each of the test tubes. The three test tubes were left for one hour. The equipment used is shown in Figure 16. Figure 16 (i) State **two** ways this method could be improved to make the results for these three | organisms more comparable. | | |----------------------------|-----| | | (2) | | 1 | | | | | | | •• | | 2 | | | | | | | • • | (ii) Describe a suitable control for this investigation. (2) (Total for question = 4 marks) | Q22. | | | |---------|---|-----| | Athlete | s often eat a high protein diet. | | | (i) Whi | ch is the test and result for a food containing protein? | | | ■ A | Benedict's reagent is used and the solution turns brick red | (1) | | ВВ | Benedict's reagent is used and the solution stays blue | | | □ C | biuret solution is used and the solution stays blue | | | ■ D | biuret solution is used and the solution turns purple | | | ` , | ested protein is absorbed in the small intestine by diffusion. Ire 15 shows part of the small intestine. Iumen of the small intestine | | (Source: © Science Photo Library C047/6177) Figure 15 | Using Figure 15 and Fick's law, explain the effect of the villi on the rate of diffusion. | (3) | |---|-----| | | | | | | | | | | | | | (iii) Digested protein enters the blood as amino acids. | | | State which component of the blood transports amino acids. | (4) | | | (1) | | | - | (Total for question = 5 marks) # Mark Scheme Q1. | Question | Answer | Additional | Mark | |--------------------|---|--|---------------------------| | number | × | guidance | | | (i) | A description which includes two from: • as running speed increases, oxygen absorbed increases (1) • then levels off (1) • at 12 km per hour / 4.1 to 4.2 dm³ (of oxygen per minute) (1) | accept any value
between 10 and 13
km per hour | (2)
AO 3 1a
AO 3 1b | | Question
number | Answer | | Mark | | (ii) | A increasing aerobic respira | ation | (1) | | | 1. The only correct answer | is A | AO 2 1 | | | B is not correct because increarespiration does use more oxyg | | | | | C is not correct because decrearespiration does use more oxyg | | | | | D is not correct because decrease respiration does use more oxyg | | | | Question | Answer | | Mark | | number | An audenstion including: | | (2) | | (iii) | An explanation including: | | (2) | | | will respire anaerobica because there is not enomuscles) (1) | | AO 2 1 | ## Q2. | Question
Number | Answer | Additional guidance | Mark | |--------------------|---|---|-------| | (i) | measurement
(2.5 – 0 =) 2.5 (cm) (1) | accept 25 (mm) | (2) | | | (2.3 = 0 -) 2.3 (CIII) (1) | accept 25 (IIIII) | AO1 1 | | | calculation | | | | | (25 ÷ 10 =) 2.5 (mm per minute) | ecf for incorrect
reading divided
by 10 | | | | | award full marks | | | | | for correct | | | | | answer with no
working | | | Question
Number | Answer | Additional guidance | Mark | |--------------------|---|--|-------| | (ii) | A description including: | | (2) | | | apparatus set up as the initial investigation (1) | | AO1 1 | | | using {no living organisms
/ glass beads} instead of
living organisms (1) | accept
alternatives to
glass beads /
non living | | ### Q3. | Question
Number | Answer | Additional guidance | Mark | |--------------------|-----------------------------|---|--------------| | (i) | 5 x 60 = 300 (1) | award full marks for
correct answer with no
working | (2)
AO2 1 | | | OR | 9000 | | | | 60 ÷ 100 = 0.6 (1) | accept other correct methods of calculation | | | | $(300 \div 100) = 3 (dm^3)$ | which is a percentage calculation | | | Question
Number | Answer | Mark | |--------------------|---|--------------| | (ii) | An explanation linking: | (2)
AO2 1 | | | because (during exercise muscles) require more
{oxygen / glucose} (1) | | | | for respiration / to release energy (1) | | | | to remove more carbon dioxide / to remove lactic acid (1) | | | | as this is a product of respiration (1) | | ## Q4. | Question
Number | Answer | Additional guidance | Mark | |--------------------|------------------------|----------------------|-------| | (i) | selection | | (3) | | | (1200 - 800 =) 400 (1) | | 2000 | | | | | AO2 1 | | | calculation | | | | | 400 ÷ 1200 = 33.33 (1) | | | | | significant figures | ecf for incorrect | | | | (-) 33% | calculation rounded | | | | | to a whole number | | | | | award full marks for | | | | | correct answer with | | | | | no working | - | | Question
Number | Answer | Additional guidance | Mark | |--------------------|--|----------------------------------|-------| | (ii) | Any two from: | K-221 | (2) | | | length of exercise (1) | | AO2 2 | | | intensity of exercise (1) | | | | | type of exercise (1) | | | | | BMI of volunteer / body
mass of volunteer (1) | accept weight /
height | | | | diet / food intake (1) | | | | | • fitness levels (1) | accept lifestyle
similarities | | | | | | | | Question
number | Indicative content | Mark | |--------------------|--|------| | * (iii) | AO2 increased blood flow • pump more blood • increased blood flow to the heart muscle | (6) | | | increased blood flow to the other muscles to deliver more oxygen and glucose for increased respiration releasing more energy for exercise to remove more carbon dioxide to remove more lactic acid increased blood flow to the skin to help cool the body | | | | decreased blood flow decreased blood flow to the kidney decreased blood flow to the stomach to allow more blood to flow to the working muscles | | | | blood flow blood flow to the brain remains the same as the brain needs a constant amount of oxygen and glucose to function | | | Level | Mark | k Descriptor | | |---------|------|--|--| | | 0 | No rewardable material. | | | Level 1 | 1-2 | The explanation attempts to link and apply knowledge and understanding of scientific ideas, flawed or simplistic consequences connections made between elements in the context of the question. | | | | | The lines of reasoning are unsupported or unclear. | | | Level 2 | 3-4 | The explanation is mostly supported throughout by linkage and application of knowledge and understanding of scientific ideas, some logical connections made between elements in the context of the question. | | | | | Lines of reasoning are mostly supported through the application of relevant evidence. | | | Level 3 | 5-6 | The explanation is supported throughout by linkage and application of knowledge and understanding of scientific ideas, logical connections made between elements in the context of the question. | | | | | Lines of reasoning are supported by sustained application of relevant knowledge. | | | Level | Mark | | |---------|------|---| | | 0 | No rewardable material. | | Level 1 | 1-2 | A simple statement, referencing whether the blood through an organ is increased, decreased OR remained the same. | | | 4 | Linked to a simple explanation. | | Level 2 | 3-4 | References to whether blood flow is increased, decreased or remained the same for TWO scenarios. | | | | Linked to two or more reasons. | | Level 3 | 5-6 | References to the blood through organs where it has increased, decreased AND remained the same. | | | | Linked to the need for more oxygen and glucose to the muscles / heart for increased respiration. | ## Q5. | Question
Number | Answer | Mark | |--------------------|---|-------| | (i) | A increases increases | (1) | | | The only correct answer is A | AO1.1 | | | B is not correct because a decrease in blood glucose concentration would decrease the rate of respiration | | | | C is not correct because a decrease in heart rate would decrease the rate of respiration | | | | D is not correct because a decrease in heart rate and blood glucose concentration would decrease the rate of respiration | | | Question
Number | Answer | Additional guidance | Mark | |--------------------|--|---|-------| | (ii) | Evaluation
(24.7 x 2.7) = 66.69 (1) | | (2) | | | rounded to one decimal place:
66.7 | award 1 mark for
correctly rounding an
incorrectly calculated
answer
award full marks for
correct answer with no | A01.1 | | Question
Number | Answer | Mark | |--------------------|---|-------| | (iii) | An investigation including four from: | (4) | | | | AO1.2 | | | a factor to control about the groups e.g. same age /
same BMI (range) (1) | | | | a factor to control about the environment where
the test takes place e.g. in the same room / same
type of running machine (1) | | | | measure breathing rate / count breaths in set time (1) | | | | calculations of means (1) | | | | repeat investigation (1) | | ### Q6. | Question
number | Answer | Additional guidance | Mark | |--------------------|---|---|---------------------------| | | A description including the following: the blood flow through the {brain/other organs} stays the same (1) | accept the blood
flow through the
brain decreases
a small amount | (3)
AO 3 1a
AO 3 1b | | | the blood flow through the
{muscles /heart} is increased
during exercise (1) | | | | | the blood flow through the
digestive system is decreased
during exercise (1) | | | ## Q7. | Question
number | Answer | Mark | |--------------------|----------------------------------|--------| | | smaller (1)
diffusion (1) | (2) | | | must be in correct order | AO 1 1 | | | accept any reasonable spellings. | AO 2 1 | ### Q8. | Answer | Additional guidance | Mark | |---|---|--| | A description including: | | (2) | | the molecules are moving from
where they are in high
concentration (in the
extracellular fluid) to a low
concentration (in the cytoplasm) | accept down a
concentration gradient | AO3 1ab | | (1) | accept no net
movement of molecules | | | until there are equal
concentrations of molecules on
either side (1) | | | | | A description including: the molecules are moving from where they are in high concentration (in the extracellular fluid) to a low concentration (in the cytoplasm) (1) until there are equal concentrations of molecules on | A description including: • the molecules are moving from where they are in high concentration (in the extracellular fluid) to a low concentration (in the cytoplasm) (1) • until there are equal concentrations of molecules on | #### Q9. | Question
number | Answer | Additional
Guidance | Mark | |--------------------|---|---|-----------------| | (i) | A description including: The more exercise you do the more likely you are able to run at 3 metres per second for 20 minutes (1) | | (2)
AO31a 1b | | | A comparison of the
data of 2 groups (1) | Ignore just
quoting data
from the table | | | Question
number | Answer | Additional
Guidance | Mark | |--------------------|---|------------------------|--------------| | (ii) | an explanation linking three from: • They had not warmed up / stretched (muscles before exercise) (1) • not enough blood / oxygen (gets to muscles / legs / around body) (1) • anaerobic respiration | | (3)
AO2.1 | | | occurs (1) • lactic acid (produced / builds up) (1) | | | ### Q10. | Question
number | Answer | Additional guidance | Mark | |--------------------|--|---|-------| | (i) | An explanation linking: | | (3) | | | the structure shows many
chambers/circles/alveoli (1) | accept air sacs | AO2 1 | | | which increase the surface area
(of the alveoli) (1) | accept surface area to volume ratio | | | | to maximise diffusion (from the
alveoli into the capillaries) (1) | accept more efficient gas exchange | | | | | accept have thin walls /
membranes (1)
so short diffusion distance
(1) | | | Question
number | Answer | Mark | |--------------------|---|-------| | (ii) | C by diffusion | (1) | | | A. is not correct because osmosis is the passive movement of water | AO2 1 | | | B is not correct because oxygen does not need active transport to travel from high to low concentrations | | | | C The only correct answer is C | | | | D is not correct because respiration uses respiration but it is not the method of movement | | ## Q11. | Question
Number | Indicative content | Mark | |--------------------|---|------------| | * | A01 | (6)
Exp | | | General points about gas exchange | A01 1 | | | Adaptations of alveoli for gas exchange | | | | breathing maintains high concentration of oxygen in alveoli / lungs. breathing maintains low concentration of carbon dioxide in alveoli / lungs. | | | | many alveoli large surface area so that more oxygen is absorbed / more carbon dioxide is released | | | | are moist so oxygen /carbon dioxide can dissolve / is able to move across into the blood | | | | surrounded by (network of) capillaries blood vessels has a (good) blood supply / (many) red blood cells keeps oxygen concentration low in blood keeps carbon dioxide concentration high in blood to absorb oxygen (quickly) to remove carbon dioxide (quickly) | | | | membranes / alveolar walls / cells are thin membranes / alveolar walls / cells are permeable allows oxygen / carbon dioxide to move through | | | Level | vel Mark | Descriptor | |---------|----------|--| | 10 | 0 | No rewardable material. | | Level 1 | 1-2 | Demonstrates elements of biological understanding, some of
which is inaccurate. Understanding of scientific ideas lacks
detail. | | | | Presents an explanation with some structure and coherence. | | Level 2 | 3-4 | Demonstrates biological understanding, which is mostly
relevant but may include some inaccuracies. Understanding
of scientific ideas is not fully detailed and/or developed. | | | | Presents an explanation that has a structure which is mostly
clear, coherent and logical. | | Level 3 | 5-6 | Demonstrates accurate and relevant biological
understanding throughout. Understanding of the scientific
ideas is detailed and fully developed. | | | | Presents an explanation that has a well-developed structure
which is clear, coherent and logical. | | Level | Mark | Additional Guidance | |------------|------|--| | Ŷ | 0 | No rewardable material. | | Level
1 | 1-2 | Makes a simple reference to a feature of alveoli, oxygen or carbon dioxide | | | | Linked to gas exchange | | Level
2 | 3-4 | Explains an adaptation of alveoli Linked to a reference to oxygen or carbon dioxide | | Level | 5-6 | explains more than one adaptation of alveoli | | 3 | | linked to oxygen and carbon dioxide | ## Q12. | Question
number | Answer | Mark | |--------------------|--|-------| | * | | (6) | | | AO2 (6 marks) | | | | Fick's law | AO2 1 | | | rate of diffusion is proportional to surface area and concentration difference | | | | and inversely proportional to the thickness of the
membrane | | | | Surface area | | | | as surface area increases the rate of diffusion also increases | | | | as there are more places for diffusion to happen faster | | | | Concentration difference | | | | the larger the difference in concentration inside the
cell to outside the cell | | | | the faster the rate of diffusion | | | | Thickness of the membrane | | | | the thicker the membrane | | | | the slower the rate of diffusion | | | | as the diffusion distance is greater | | | Level Mark | | Descriptor | |------------|-----|--| | | 0 | No rewardable material. | | Level 1 | 1-2 | The explanation attempts to link and apply knowledge and understanding of scientific ideas, flawed or simplistic connections made between elements in the context of the question. Lines of reasoning are unsupported or unclear | | Level 2 | 3-4 | The explanation is mostly supported through linkage and application of knowledge and understanding of scientific ideas, some logical connections made between elements in the context of the question Line of reasoning mostly supported through the application of relevant evidence | | Level 3 | 5-6 | The explanation is supported throughout by linkage and application of knowledge and understanding of scientific ideas, some logical connections made between elements in the context of the question Line of reasoning are supported by sustained application of relevant evidence | ## Q13. | Question
number | Answer | Additional guidance | Mark | |--------------------|---|---|--------| | | An explanation that links two of the following: | accept heart for muscle | (2) | | | there is increased blood flow to
the muscles (1) | accept there is a
{reduced
/restricted} blood
flow through the
digestive system | AO 2 1 | | | to allow for { respiration/
release of energy} (in the
muscles) (1) | accept to supply
oxygen/glucose to
the
muscles/remove
carbon dioxide | | #### Q14. | Question
number | Answer | Additional guidance | Mark | |--------------------|---|--|-------| | | An explanation linking: | | (2) | | | to release energy (1) | | AO1 1 | | | for metabolic processes /
chemical reactions (1) | accept named metabolic process e.g. movement | | | | chemical reactions (1) | process e.g. movement | | ## Q15. | Question
number | Answer: | Additional guidance | Mark | |--------------------|--|--|----------------| | (i) | An explanation linking germinating peas produce carbon dioxide (1) | accept dried
peas did not
produce carbon
dioxide | (2)
AO3 1ab | | | because germinating peas
were respiring (aerobically) (1) | accept because
dried peas do
not respire | | | Question
number | Answer | Mark | |--------------------|---|---------| | (ii) | B when glucose is broken down in the presence of oxygen | (1) | | | The only correct answer is B | AO3 1ab | | | A is not correct because the carbon dioxide was not produced by photosynthesis in this investigation. | | | | C is not correct because the carbon dioxide was not produced when glucose is broken down in the absence of oxygen in this investigation. | | | | D is not correct because the carbon dioxide was not produced by the reaction between oxygen and water in this investigation. | | ### Q16. | Question
Number | Answer | Additional
Guidance | Mark | |--------------------|--|------------------------|------------| | | An explanation linking: | | (2)
AO2 | | | because of lactic acid (1) | | | | | from anaerobic respiration (1) | | | ### Q17. | Question
number | Answer | Mark | |--------------------|--|--------------| | (i) | A aerobic respiration and anaerobic respiration. The only correct answer is A aerobic respiration and anaerobic respiration B is incorrect because anaerobic respiration uses glucose. C is incorrect because aerobic respiration uses glucose. D is incorrect because aerobic respiration and anaerobic respiration use glucose. | (1)
AO1.1 | | Question
number | Answer | Mark | |--------------------|---|--------------| | (ii) | An explanation linking three of: as activity / speed increases, the respiration rate increases (1) because respiration supplies energy (to muscles / cells) (1) when sleeping you are not moving / using muscles very much (1) the faster you run / the more you use muscles (1) so more energy is required. (1) | (3)
AO3.2 | ## Q18. | Question
Number | Answer | Mark | |--------------------|--|--------------| | (i) | D sludgeworm | (1)
AO1 1 | | | The only correct answer is D | | | | A is not correct because fertiliser is not an indicator species | | | | B is not correct because lichen is an air pollution indicator | | | | C is not correct because stonefly are clean water indicators | | | Question
Number | Answer | Additional Guidance | Mark | |--------------------|--|--|--------------| | (ii) | haemoglobin binds oxygen /
increases the rate of diffusion /
polluted water is low in oxygen | accept allows them to get
more oxygen | (1)
AO2 1 | | Question
Number | Answer | Additional Guidance | Mark | |--------------------|---|------------------------------|--------------| | (iii) | Any two from: • concentration gradient (1) | | (2)
AO1 1 | | | diffusion distance (1)surface area (1) | accept thickness of membrane | | | | | accept temperature (1) | | #### Q19. | Question
Number | Answer | Additional guidance | Mark | |--------------------|-------------|---------------------|-------| | | lactic acid | accept lactate | (1) | | | | 1 | AO1.1 | ### Q20. | Question
Number | Answe | r | | Mark | |--------------------|--------|----------------|---|-------| | (i) | D | 10 | 4 | (1) | | | The on | ly correct ans | wer is D | A02.1 | | | 100 | | e for oxygen to diffuse ir
tion must be lower than | 149 | | | | | e for oxygen to diffuse ir
tion must be lower than | | | | 1 | | e for oxygen to diffuse ir
tion must be lower than | | | Question
Number | Answer | Additional guidance | Mark | |--------------------|------------------------|--|--------------| | (ii) | carbon dioxide + water | accept CO ₂ for
carbon dioxide
H ₂ O for water | (1)
AO1.1 | | | | reject CO2, CO².
H20 and H²O | | | | | products can be in either order. | | ## Q21. | Question
number | Answer | Additional
Guidance | Mark | |--------------------|---|--|------------------------| | (i) | Any two from: | | (2)
AO3.3b | | | same concentration of indicator (1) same mass of organisms (1) | accept weight
for mass
accept | | | | same volume of indicator (1) | mass/weight | | | | same temperature (1) same volume / size of test | | | | | tube (1) repeat the experiment (1) | 3 | | | | use a control (1) | ignore
references to
time as this is in
the stem of the
question | | | Question
number | Answer | Additional guidance | Mark | |--------------------|--|---|-------| | (ii) | A description including: | | (2) | | | same test tube, gauze and
bung with
(hydrogencarbonate)
indicator (1) | accept set up the same
{apparatus/equipment} | Ao2 2 | | | without any live organisms /
with a mass of inert object
e.g.stones /dead peas/glass
beads(1) | | | ## Q22. | Question
Number | Answer | Mark | |--------------------|---|--------------| | (i) | D biuret solution is used and the solution turns purple | (1)
AO1 2 | | | The only correct answer is D | | | | A is not correct because Benedict's is not used to test for protein | | | | B is not correct because Benedict's is not used to test for protein | | | | C is not correct because biuret solution does not stay blue with protein | | | | | | | Question
Number | Answer | Additional
Guidance | Mark | |--------------------|--|--|--------------| | (ii) | (Fick's law states) the rate of diffusion is proportional to surface area x concentration gradient (1) | accept equation | (3)
AO2 1 | | | and inversely proportional to the
thickness if the membrane (1) | accept shorter
diffusion distance
for membrane is
thinner | | | | increased rate of diffusion (1) | | | | | because the villi increase surface
area / because the membrane is
thinner (1) | | | | Question
Number | Answer | Mark | |--------------------|----------------|--------------| | (iii) | (blood) plasma | (1)
AO1 1 | | | | |