
Questions are for both separate science and combined science students unless indicated in the question

Q1.

This question is about cells.

(a) Which diagram shows oxygen moving by diffusion?

Tick (\checkmark) one box.

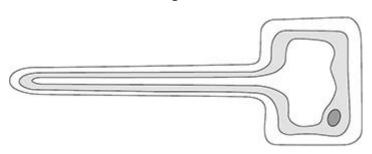
(b) Complete the sentences.

Choose answers from the box.

carbon dioxide	chlorophyll	energy
light	mineral ions	water

Plant cells absorb substances from the soil.

Plant cells use osmosis to absorb ______.


Plant cells use active transport to absorb

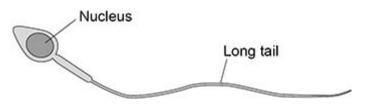
Active transport moves substances against the concentration gradient and needs

(3)

Figure 1 shows a specialised cell that absorbs substances from the soil.

(c) Name the type of specialised cell in **Figure 1**.

(1)


(d) Describe how the cell in **Figure 1** is adapted to increase the absorption of substances from the soil.

(1)

A sperm cell is another specialised cell.

Figure 2 shows a sperm cell.

Figure 2

(e) Draw **one** line from each feature to how the feature helps the sperm cell carry out its function.

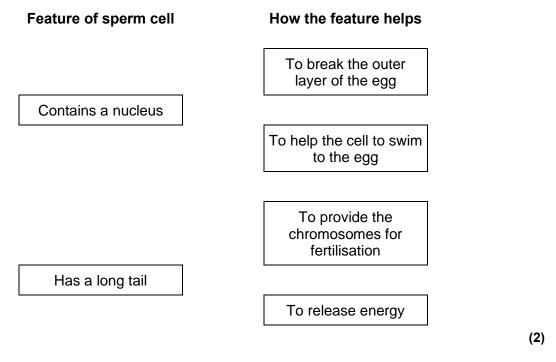
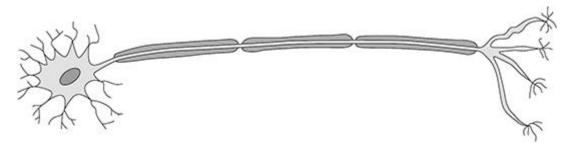



Figure 3 shows another specialised cell.

Figure 3

(f) Name the type of cell in **Figure 3**.

Describe **one** feature of the cell that helps it to carry out its function.

cell		
Feature of the cell		_

(Total 10 marks)


(2)

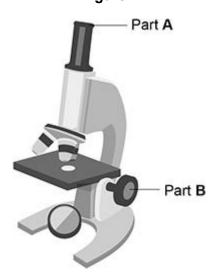
Q2.

A student prepared some animal cells to view using a microscope.

Figure 1 shows the student preparing the cells.

Figure 1

(a)	Name two pieces of laboratory equipment the student could have used to
	prepare cells to view using a microscope.

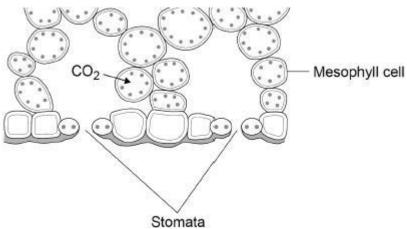

1				

(2)

(1)

Figure 2 shows the student's light microscope.

Figure 2



(D)	Name part A.		

(c) What is the function of part **B**?

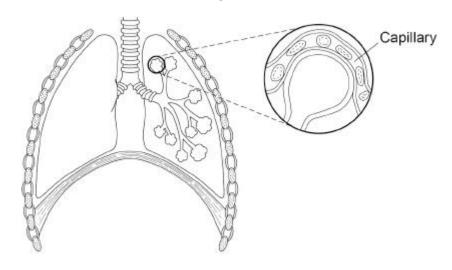
	est one reason why the student could not see any cells when looking
nroug	yh part A .
Red b	lood cells are specialised animal cells.
Comp	are the structure of a red blood cell with the structure of a plant cell.
/hen	placed into a beaker of water:
	a red blood cell bursts
	a plant cell does not burst.
	n why the red blood cell bursts but the plant cell does not burst.

		(Total 13 marks)
Q3.	usion is an important process in animals and plants.	
(a)	What is meant by the term diffusion?	
		(2)
(b)	Figure 1 shows part of a leaf.	
	Figure 1	

Molecules of carbon dioxide diffuse from the air into the mesophyll cells.

Which **two** changes will increase the rate at which carbon dioxide diffuses into the mesophyll cells?

Tick (✓) **two** boxes.


Decreased number of chloroplasts in the cells	
Decreased surface area of cells in contact with the air	0 0
Increased carbon dioxide concentration in the air	
Increased number of stomata that are open	

Increased oxygen concentration in the air	
	(2)

(c) Diffusion also happens in the human lungs.

Figure 2 shows the human breathing system.

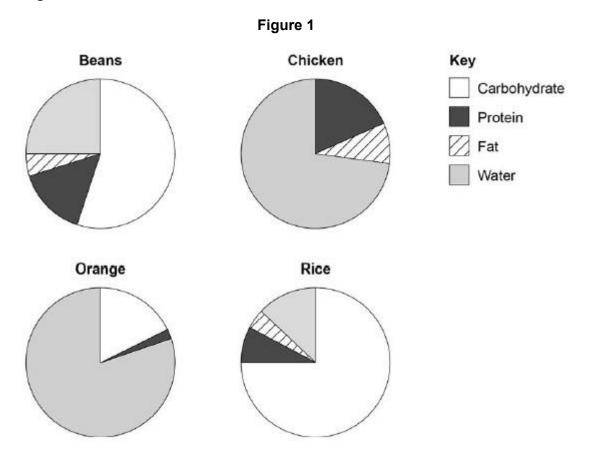
Figure 2

Explain how the human lungs are adapted for efficient exchange of gases by diffusion.

(6)

Figure 3 shows a root hair cell.

Figure 3 Key .. Water molecules ×× Nitrate ions (d) Name the process by which water molecules enter the root hair cell. (1) Nitrate ions need a different method of transport into the root hair cell. (e) Explain how the nitrate ions in Figure 3 are transported into the root hair Use information from Figure 3 in your answer. Name of process _____ Explanation _____


(Total 14 marks)

(3)

Q4.

Many foods contain carbohydrates.

Figure 1 shows information about four different foods.

(a) Which food contains the highest percentage of carbohydrate?

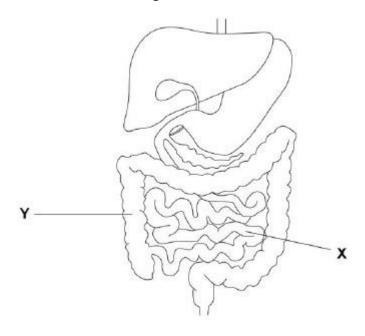
Beans

Chicken

Orange

Rice

Tick (✓) one box.


(1)

Estimate the p	ercentage of water found in beans.
	Percentage =
Look at Figure	a 1.
Why would ea only chicken?	ting only beans provide a more balanced diet than eating
Sugars are pro	oduced when enzymes break down starch.
	mme of the enzyme which breaks down starch to produce
Tick (✓) one b	OOX.
Amylase	
Bile	
Lipase	
Protease	
Which chemic	al could be used to test for glucose?
Tick (✓) one b	
Benedict's rea	agent
Biuret reagen	t
lodine solution	n
Sulfuric acid	

(f)	What colour chan			•	t for g	·	(1)	
(g)	People with diabe in their blood.	tes have dif	ficulty c	controlling the co	oncen	tration of glucose		
	The blood of four	people was	tested.					
	Table 1 shows the results.							
			Table	1				
		Person	glu	oncentration of cose in blood i irbitrary units				
		Α		4.2				
		В		6.9				
		С		7.1				
		D		5.1				
	Table 2 shows the diabetes.	e informatio	n used Table	·	f a pe	rson has		
		Concentra of glucose blood in arbitrary u	e in	Conclusior	1			
		<5.6		No diabetes	;			
		5.6 to 7.0		Mild diabete	s			
		>7.0		Severe diabet	es			
	Which person has Tick (✓) one box.		betes?					
	A	В		c	D		(1)	

Figure 2 shows part of the human digestive system.

(h)	Glucose is absorbed into the bloodstream in part X .	
	Name part X .	
		(1)

(i) Complete the sentences.

Choose answers from the box.

active transport	digestion	excretion
osmosis	respiration	

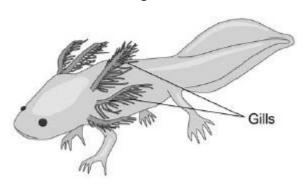
Some glucose is absorbed into the bloodstream against the concentration gradient

by the process of ______.

Water moves out of part \boldsymbol{Y} and into the bloodstream by

the process of ______ .

(2)


(Total 10 marks)

Q5.

An animal called an axolotl lives in water.

Figure 1 shows an axolotl.

Figure 1

Oxygen enters the axolotl's bloodstream through the gills by diffusion.

(a)	What is diffusion?	
	Tick (✓) one box.	
	The movement of particles from a high concentration to a low concentration	
	The movement of particles from a low concentration to a high concentration	
	The movement of water from a concentrated solution to a more dilute solution	
		(1)
(b)	Describe how one feature of the axolotl's gills increases the rate of diffusion of oxygen.	
	Use information from Figure 1.	
	Feature	
	Description	
		(2)

If a gill of an axolotl is removed, stem cells in the damaged area will divide and a new gill will grow.

adaptation	differentiation	evolution	variation
When stem cells sp	pecialise to produc	e gill cells, this	process is
known as			
Complete the sente	ence.		
Choose the answe	r from the box.		
binary fis	sion mito	osis mu	ıtation
To grow a new gill	the stem cells divid	de by	
		,	
Which one of the fo	ollowing does not o	contain stem ce	lls?
Tick (√) one box.			
Bone marrow			
Embryos			
Hair			
Meristem tissue			
Axolotis are small a	animals. Axolotls a	re used in stem	cell research
What are two adva	intages of using ax	colotls in stem c	ell research?
Tick (✓) two boxes	i.		
Axolotis are cheap	to feed.		

AxolotIs are endangered.		
AxolotIs live in water.		
Axolotl research is cruel.		
		(2)
Oxygen uptake in humans takes p		
Figure 2 shows the human breatl		
	Figure 2	
D	A B	
(g) Where does oxygen enter the	he bloodstream?	
Tick (√) one box.		
А В	C D	(1)
(h) Name part E on Figure 4 .		
(i) Which blood vessel carries b		(1)
Tick (✓) one box.		
Aorta		

f the substances the body excretes are urea and carbon dioxide. Complete the sentence. Choose the answer from the box. (separate only) carbohydrate lipid protein salt A person makes a lot of urea if the person's diet contains a lot of Why must urea be excreted from the body? (separate only) A person produces more carbon dioxide during exercise than when Complete the sentences. Choose answers from the box. breathing digestion egestion osmosis respiration		Choose answers from breathing	es. the box. digestio	n ege	
f the substances the body excretes are urea and carbon dioxide. Complete the sentence. Choose the answer from the box. (separate only) carbohydrate lipid protein salt A person makes a lot of urea if the person's diet contains a lot of Why must urea be excreted from the body? (separate only) A person produces more carbon dioxide during exercise than when Complete the sentences. Choose answers from the box.		Choose answers from	es. the box.	_	
f the substances the body excretes are urea and carbon dioxide. Complete the sentence. Choose the answer from the box. (separate only) carbohydrate lipid protein salt A person makes a lot of urea if the person's diet contains a lot of Why must urea be excreted from the body? (separate only) A person produces more carbon dioxide during exercise than when Complete the sentences.		Complete the sentence	es.	e during exercise t	han when
f the substances the body excretes are urea and carbon dioxide. Complete the sentence. Choose the answer from the box. (separate only) carbohydrate lipid protein salt A person makes a lot of urea if the person's diet contains a lot of Why must urea be excreted from the body? (separate only) A person produces more carbon dioxide during exercise than when				e during exercise t	han when
f the substances the body excretes are urea and carbon dioxide. Complete the sentence. Choose the answer from the box. (separate only) carbohydrate lipid protein salt A person makes a lot of urea if the person's diet contains a lot of Why must urea be excreted from the body? (separate only)		A person produces mo	re carbon dioxid	e during exercise t	han when
f the substances the body excretes are urea and carbon dioxide. Complete the sentence. Choose the answer from the box. (separate only) carbohydrate lipid protein salt A person makes a lot of urea if the person's diet contains a lot of					
f the substances the body excretes are urea and carbon dioxide. Complete the sentence. Choose the answer from the box. (separate only) carbohydrate lipid protein salt A person makes a lot of urea if the person's diet contains		Why must urea be exc	reted from the bo	ody? (separate or	nly)
f the substances the body excretes are urea and carbon dioxide. Complete the sentence. Choose the answer from the box. (separate only) carbohydrate lipid protein salt	8	a lot of			
f the substances the body excretes are urea and carbon dioxide. Complete the sentence. Choose the answer from the box. (separate only)		A person makes a lot of	of urea if the pers	son's diet contains	
f the substances the body excretes are urea and carbon dioxide. Complete the sentence.		carbohydrate	lipid	protein	salt
f the substances the body excretes are urea and carbon dioxide.		Choose the answer fro	om the box. (ser	parate only)	
		Complete the sentence	Э.		
(Т	0	f the substances the b	ody excretes are	e urea and carbon	dioxide.
					(1
					47
	Ve	ena cava			

the rate of _	
	(2)

(d) Excess water must also be removed from the body.

If a person sweats a lot, less water will be excreted in the urine.

A healthy person did the same amount of exercise on each of 3 days.

The following table shows information for the 3 days.

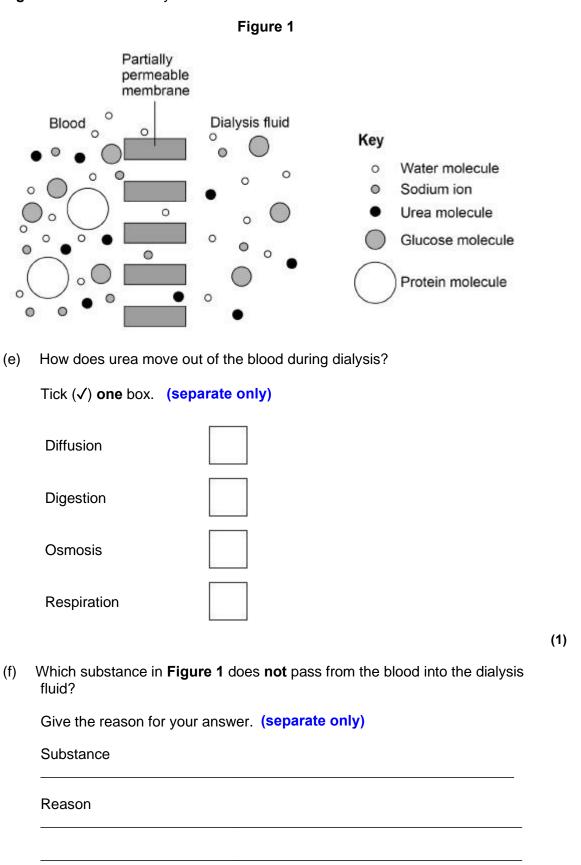
Day	Air temperature in °C	Volume of water consumed in cm ³	Relative amount of urine produced by the kidneys
1	30	1500	
2	20	1500	
3	15	2000	

Complete the table.

Choose answers from the box. (separate only)

least medium most	
-------------------	--

(2)

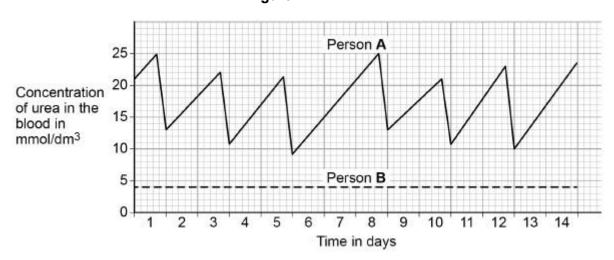

Some people have kidney disease.

Kidney disease may be treated by dialysis or by having a kidney transplant operation.

- During dialysis, a person is connected to a machine that filters the blood.
- Each dialysis session lasts about 6 hours.
- The person has several dialysis sessions each week.

(2)

Figure 1 shows how dialysis works.



Two people have kidney disease.

- Person A is treated by dialysis.
- Person B has had a kidney transplant.

Figure 2 shows changes in the urea concentration in the blood of each person over 2 weeks.

Figure 2

	ens to the concentration of urea in the blood between dialysis separate only)
	asons why a kidney transplant is a better method for treating use than dialysis. (separate only)
kidney disea	
kidney disea	se than dialysis. (separate only)

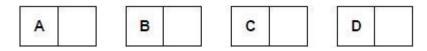
	_	
()		
w		

Earthworms are small animals that live in soil. Earthworms have no specialised gas exchange system and absorb oxygen through their skin.

(a) What is the name of the process in which oxygen enters the skin cells?

Tick one box.

Active transport	
Diffusion	
Osmosis	
Respiration	


(1)

The table below shows information about four skin cells of an earthworm.

Cell	Percentage of oxygen			
	Outside cell	Inside cell		
Α	9	8		
В	12	8		
С	12	10		
D	8	12		

(b) Which cell has the smallest difference in percentage of oxygen between the outside and the inside of the cell?

Tick one box.

(1)

(c) Which cell will oxygen move into the fastest?

Tick one box.

Α	В	С	D

Suggest why a large surface area to volume ratio is an advantage to an
earthworm.
The earthworm uses enzymes to digest dead plants.
Many plants contain fats or oils.
Which type of enzyme would digest fats?
Earthworms move through the soil.
This movement brings air into the soil.
Dead plants decay faster in soil containing earthworms compared with soi containing no earthworms.
Explain why.
When earthworms reproduce, a sperm cell from one earthworm fuses with an egg cell from a different earthworm.
Name the process when an egg cell and a sperm cell fuse.

(h) Some types of worm reproduce by a process called fragmentation.

In fragmentation, the worm separates into two or more parts. Each part grows into a new worm.

(1)

(Total 10 marks)

Q8.

A student carried out an investigation using chicken eggs.

What type of reproduction is fragmentation?

This is the method used.

- 1. Place 5 eggs in acid for 24 hours to dissolve the egg shell.
- 2. Measure and record the mass of each egg.
- 3. Place each egg into a separate beaker containing 200 cm³ of distilled water.
- 4. After 20 minutes, remove the eggs from the beakers and dry them gently with a paper towel.
- 5. Measure and record the mass of each egg.

Table 1 shows the results.

Table 1

Egg	Mass of egg without shell in grams	Mass of egg after 20 minutes in grams
1	73.5	77.0
2	70.3	73.9
3	72.4	75.7
4	71.6	73.1
5	70.5	73.8

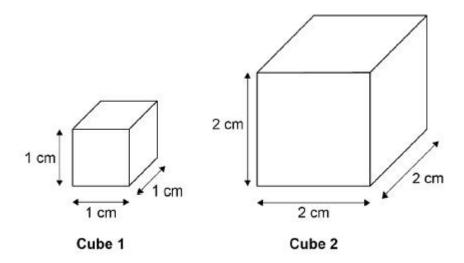
Do you a	gree with the student?
Give a re	ason for your answer.
Calculate	the percentage change in mass of egg 3.
	Percentage change in mass =
Explain w	hy the masses of the eggs increased.
	ow the student could modify the investigation to determine the ation of the solution inside each egg.

(3)

Chicken egg shells contain calcium. Calcium ions are moved from the shell into the cytoplasm of the egg.

Table 2 shows information about the concentration of calcium ions.

Table 2


Location	Concentration of calcium ions in arbitrary units
Egg shell	0.6
Egg cytoplasm	2.1

he egg.	cium ions are move	into the cytopiach	1 01
ie egg.			

Q9.

A student used cubes of potato to investigate the effect of surface area and volume on the rate of osmosis.

The diagram shows two of the cubes of potato the student used.

The surface area to volume ratio of **cube 1** is 6:1.

(8	a)	Calculate	the tota	l surface	area o	f cube	2
١-	~,	• • • • • • • • • • • • • • • • • • • •					_

Total surface area of **cube 2** = _____ cm²

(1)

(b) Calculate the volume of cube 2.

Volume of **cube 2** = _____ cm³

(1)

(c) Calculate the surface area to volume ratio of **cube 2**.

Use the equation:

surface area to volume ratio =
$$\frac{\text{surface area}}{\text{volume}}$$

This i	s the method used.
1.	Cut two cubes of potato of size 2 cm × 2 cm × 2 cm
••	 Cut one of these cubes into 8 cubes of potato of size 1 cm x 1 cm x 1 cm (sample A).
	• Do not cut the other cube (sample B).
2.	Measure the mass of each sample A and the mass of sample B .
3.	Place all the cubes into a beaker of distilled water.
4.	Leave for 30 minutes.
5. towel	Remove the cubes from the beaker and dry the surfaces with a paper .
6.	Measure the mass of each sample of cubes.
(d)	Why were 8 cubes of size 1 cm \times 1 cm \times 1 cm but only one cube of size 2 cm \times 2 cm \times 2 cm cube used?
(e)	Why did the student dry the surface of each potato cube in step 5 of the method?

The table below shows the student's results.

	Mass at start in g	Mass at end in g	Mass change in g
Sample A Eight cubes, each measuring 1 cm × 1 cm × 1 cm	10.4	12.2	1.8
Sample B One cube, measuring 2 cm × 2 cm × 2 cm	9.9	10.7	x

AQA Biology GCSE - Transport in Cells

	Mass change X	X =	
Explain why the masse	es of both samples of co	ubes incre	eased.
It would be better to ca change in mass.	ilculate percentage cha	nge in ma	ass rather than
Why is this a more vali	d method?		
Tick one box.			
Because it makes it a	fair test.		
Because it makes the samples of cubes mor			
Because the samples masses at the start of	of cubes were different the investigation.	İ	
Explain why the mass of the cube in sa	of the cubes in sample mple B .	A increas	ed more than the

Page 27 of 41

(1)

^	4	Λ	
u		U.	

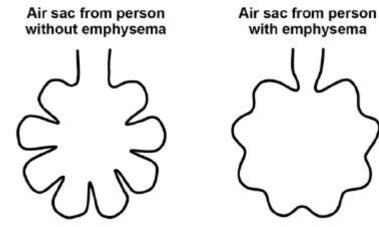
(a)

Gases enter and leave the blood by diffusion.

Define the term diffusion.

` '				

(b) Name the main gases that diffuse into and out of the blood **in the lungs**.


Into the blood _____

Out of the blood ______ (1)

(c) Smoking can cause emphysema.

Look at Figure 1 below.

Figure 1

Emphysema causes the walls of the air sacs in the lungs to break down

Explain how this will affect the diffusion of gases into and out of the blood.

Smoking during pregnancy can cause low birth mass in babies.

Table 1 shows the World Health Organisation categories for birth mass.

Table 1

Category	Birth mass in g
Above normal birth mass	> 4500
Normal birth mass	2500–4500
Low birth mass	1500–2499
Very low birth mass	1000–1499
Extremely low birth mass	< 1000

(d) Complete **Table 2**.

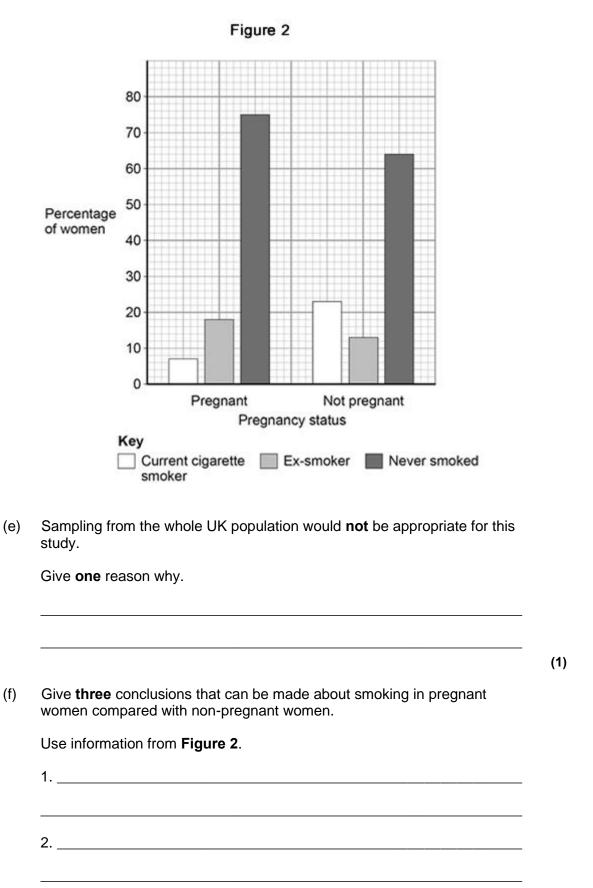
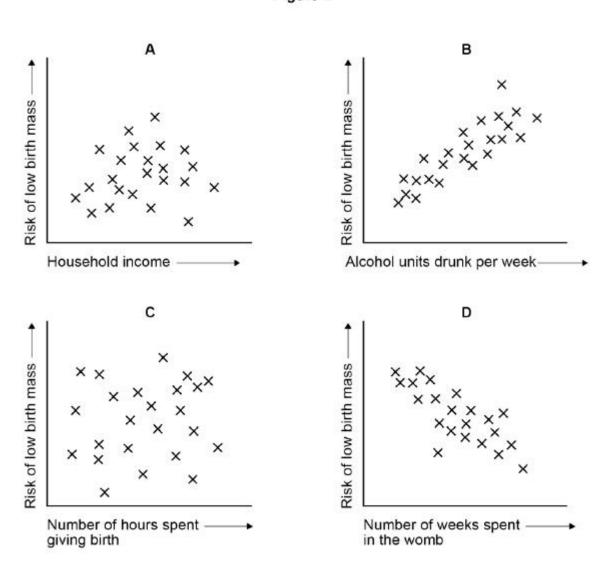

Use information in Table 1.

Table 2

Baby	Birth mass in g	Category	
Α	2678	Normal birth mass	
В	1345		
С	991		

(2)

Figure 2 shows data from a study about pregnancy and smoking in women in the UK.



(3)

Other factors can also be linked to low birth mass.

Figure 3 shows the relationship between four of these factors and the risk of low birth mass.

Figure 3

(g) What type of graph is shown in **Figure 3**?

Tick one box.

Bar graph
Histogram

AQA Biology GCSE - Transport in Cells

	Line graph	
	Scatter graph	
		(1)
(h)	Which of the graphs in Figure 3 shows a positive correlation?	
	Tick one box.	
	A B C D	(1)
(i)	A student concluded that the longer a woman spends giving birth, the greater the risk of low birth mass.	
	Give one reason why the student's conclusion is not correct.	
	Use evidence from Figure 3.	
	(Total 13 mar	(1) rks)
Q11.	(Total 13 mar	
Q11. Plan	(Total 13 mar	
Plan	ts transport water and mineral ions from the roots to the leaves.	
Plan	ts transport water and mineral ions from the roots to the leaves. Plants move mineral ions:	
Plan	ts transport water and mineral ions from the roots to the leaves. Plants move mineral ions: • from a low concentration in the soil	
Plan	ts transport water and mineral ions from the roots to the leaves. Plants move mineral ions: from a low concentration in the soil to a high concentration in the root cells. What process do plants use to move these minerals ions into root cells?	
Plan	ts transport water and mineral ions from the roots to the leaves. Plants move mineral ions: from a low concentration in the soil to a high concentration in the root cells.	
Plan	ts transport water and mineral ions from the roots to the leaves. Plants move mineral ions: from a low concentration in the soil to a high concentration in the root cells. What process do plants use to move these minerals ions into root cells?	
Plan	ts transport water and mineral ions from the roots to the leaves. Plants move mineral ions: from a low concentration in the soil to a high concentration in the root cells. What process do plants use to move these minerals ions into root cells? Tick one box.	

	how water n	noves from roo	ts to the leaves	S.
Plants los	se water thro	ugh the stomat	a in the leaves	S.
The epide	ermis can be	peeled from a	leaf.	
he stom	ata can be s	een using a lig	ht microscope	
he table	below show	s the data a st	udent collected	d from five areas on one
J				
ou.	Loof	Number o	of stomata	
	Leaf area	Number o Upper surface	of stomata Lower surface	
		Upper	Lower	
	area	Upper surface	Lower surface	
	area 1	Upper surface	Lower surface 44	
	1 2	Upper surface 3	Lower surface 44 41	
	1 2 3	Upper surface 3 0	Lower surface 44 41 40	
	1 2 3 4	Upper surface 3 0 1 5	Lower surface 44 41 40 42	
	1 2 3 4 5 Mean	Upper surface 3 0 1 5	Lower surface 44 41 40 42 39 X	

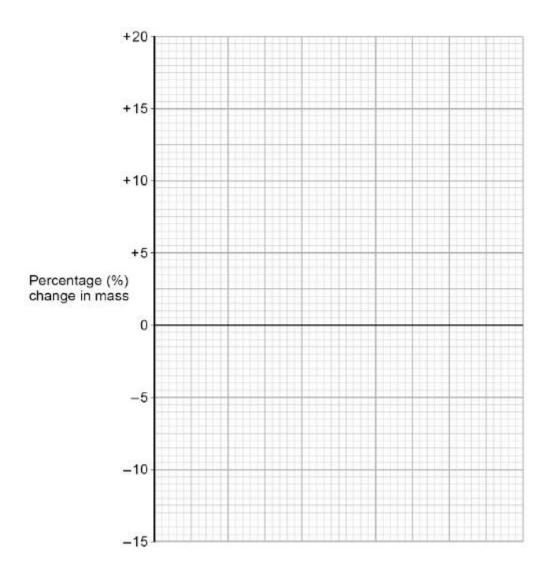
What is the me	edian number of stomata on the upper surface of the lea	af?
Calculate the	value of X in the table.	
	wer to 2 significant figures.	
Give your aris	wer to 2 significant rigures.	
	Mean number of stomata on lower surface of leaf = _	
The plant used surface of the	in this investigation has very few stomata on the upper leaf.	
Explain why th	nis is an advantage to the plant.	

Q12.

A student investigated the effect of different sugar solutions on potato tissue.

This is the method used.

- 1. Add 30 cm³ of 0.8 mol dm⁻³ sugar solution to a boiling tube.
- 2. Repeat step **1** with equal volumes of 0.6, 0.4 and 0.2 mol dm⁻³ sugar solutions.
- 3. Use water to give a concentration of 0.0 mol dm⁻³.
- 4. Cut five cylinders of potato of equal size using a cork borer.
- 5. Weigh each potato cylinder and place one in each tube.
- 6. Remove the potato cylinders from the solutions after 24 hours.


- 7. Dry each potato cylinder with a paper towel.
- 8. Reweigh the potato cylinders.

The table below shows the results.

Concentration of sugar solution in mol dm ⁻³	Starting mass in g	Final mass in g	Change of mass in g	Percentage (%) change
0.0	1.30	1.51	0.21	16.2
0.2	1.35	1.50	0.15	X
0.4	1.30	1.35	0.05	3.8
0.6	1.34	1.28	-0.06	-4.5
0.8	1.22	1.11	-0.11	-9.0

	Percentage change in mass =	%
Why did the the change	student calculate the percentage change in mas in grams?	s as well as

- (c) Complete the graph using data from the table above.
 - Choose a suitable scale and label for the *x*-axis.
 - Plot the percentage (%) change in mass.
 - Draw a line of best fit.

(4)

(d) Use your graph to estimate the concentration of the solution inside the potato cells.

Concentration = _____ mol dm⁻³

(1)

(e) The results in the table above show the percentage change in mass of the potato cylinders.

Explain why the percentage change results are positive **and** negative.

			_
(f)	Suggest two possible sources of error in the method given	ahove	(
(1)			
	1		-
	2		
			-
			_ (
		(Total 1	3 mark
13.			
υ.			
	plain how the human circulatory system is adapted to:		
	plain how the human circulatory system is adapted to: supply oxygen to the tissues		
Ехр			
E xp	supply oxygen to the tissues		_
E xp	supply oxygen to the tissues		_
E xp	supply oxygen to the tissues		_
E xp	supply oxygen to the tissues		_
E xp	supply oxygen to the tissues		- - -
E xp	supply oxygen to the tissues		- - -
E xp	supply oxygen to the tissues		- - -
E xp	supply oxygen to the tissues		- - -
E xp	supply oxygen to the tissues		- - - -
E xp	supply oxygen to the tissues		- - - -

Page 37 of 41

Q14.

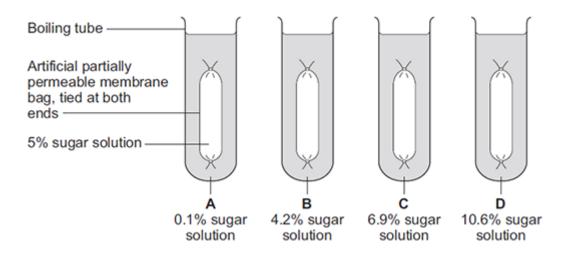
Cells, tissues and organs are adapted to take in different substances and get rid of different substances.

The table shows the concentration of four ions outside cells and inside cells.

lon	Concentration outside cells in mmol per dm³	Concentration inside cells in mmol per dm³
Sodium	140	9
Potassium	7	138
Calcium	2	27
Chloride	118	3

(a)	Use information t	from the table	above to com	plete the follov	wing sentences.

Sodium ions will move into cells by the process	
of	
Potassium ions will move into cells by the process	
of	(2)
	\ - /

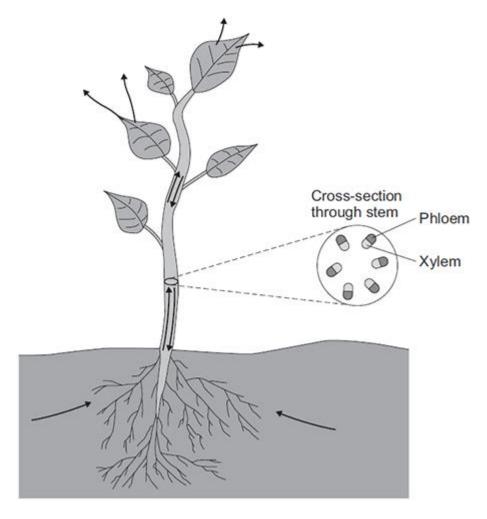

(b) Some students investigated the effect of the different concentrations of sugar in four drinks, **A**, **B**, **C** and **D**, on the movement of water across a partially permeable membrane.

The students:

- made four bags from artificial partially permeable membrane
- put equal volumes of 5% sugar solution in each bag
- weighed each bag containing the sugar solution
- placed one bag in each of the drinks, A, B, C and D
- after 20 minutes removed the bags containing the sugar solution and weighed them again.

The diagram below shows how they set up the investigation.

(Total 8 marks)


	ink, A , B , C or D , would you expect the bag to show the nange in mass?
Tick (✔) o	ne box.
A	B C D
Explain whe	ny you think the bag you chose in part (b)(ii) would show st change.

Q15.

In this question you will be assessed on using good English, organising information clearly and using specialist terms where appropriate.

Plants transport many substances between their leaves and roots.

The diagram below shows the direction of movement of substances through a plant.

Describe how **ions**, **water** and **sugar** are obtained and transported through plants.

In your answer you should refer to materials moving upwards in a plant and materials moving downwards in a plant.	to

PhysicsA	ndMaths	sTutor.con

AQA	Biology	GCSE	-	Transport in	1	Cells
-----	---------	-------------	---	--------------	---	-------

(Total 6 ma
(Lotal 6 ma
(10(a) 0 11