edexcel

Mark Scheme (Results)
November 2012

GCSE Biology
5BI2H/01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk for our BTEC qualifications.
Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

If you have any subject specific questions about this specification that require the help of a subject specialist, you can speak directly to the subject team at Pearson. Their contact details can be found on this link: www.edexcel.com/teachingservices.

You can also use our online Ask the Expert service at www.edexcel.com/ask. You will need an Edexcel username and password to access this service.

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

November 2012
Publications Code UG034044
All the material in this publication is copyright
© Pearson Education Ltd 2012

GCSE Biology 5BI 2H/ 01 Mark Scheme - November 2012

Question Number	Answer	Acceptable answers	Mark
$\mathbf{1 (a)}$	A - chromosomal DNA		(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{1 (b) (i)}$	Any two from the following		
	• cell wall (1)	not membrane	
• capsule / slime coat (1)	ignore flagellum / vacuole / DNA		
	• small ribosome (1)		
	• mesosome (1)		(2)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{1 (b) (i i)}$	A description including any three from the following - removal of (human) gene (1)	ignore ref to DNA being removed from bacteria (1)	- using enzymes (1) - gene / DNA (from human cell) added to plasmid (1)
- plasmid inserted into bacterium (1)	(3)		

Question Number	Answer	Acceptable answers	Mark
$\mathbf{1 (b) (i i i)}$	Any two from the following -to produce medicines/vaccines / hormones /insulin / clotting factors (1) -an appropriate advantage (1)ignore details of modification e.g. cure diseases, for diabetes, less likely to be rejected, avoids use of animals, produces large quantities, can be used by vegans Allow an appropriate advantage of golden rice	(2)	

Question Number	Answer	Acceptable answers	Mark
2(a)	A description that includes two of the following \bullet hydrogen bonds (1) - between (complementary) base pairs (1)	A bonds accept singular wrong pairings	

Question Number	Answer	Acceptable answers	Mark
$\mathbf{2 (b)}$	-one bar the height of the guanine bar (34\%) and one bar the height of the thymine bar (16\%) (1) - bars for cytosine and adenine shown the correct way round (1)	$+/-1$ square (including sketches)	(2)

Question	Answer									Mark
2(c)(i)										
	G	G	C	T	A	G	T	T	G	
	C	C	G	A	U	C	A	A	C	
	[all correct $=2$ marks and 1 mistake $=1$ mark]									(2)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{2 (c) (i i)}$	three / 3	Reject any other numbers given	(1)

Question Number	Answer	Acceptable answers	Mark
2(d)	ribosome(s) / polysome(s)	I gnore cytoplasm Reject any other structure given	(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{3 (a)}$	D - transpiration		(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{3 (b) (i)}$	$\mathrm{B}-32 \mathrm{~g}$		(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{3 (b) (\text { ii) }}$	A description including two of the following - it rises between the temperatures of $15\left({ }^{\circ} \mathrm{C}\right)$ and $35\left({ }^{\circ} \mathrm{C}\right)(1)$	ignore any explanation given, including ref to transpiration	award one mark for : water loss went up and then went down
- water loss decreases after			
$35\left({ }^{\circ} \mathrm{C}\right)(1)$	credit correct reference to figures from the table, if related to temperature (1)	eg. greatest water loss at $35\left({ }^{\circ} \mathrm{C}\right)$ there is less water loss at $45\left({ }^{\circ} \mathrm{C}\right)$ than at $35\left({ }^{\circ} \mathrm{C}\right)$	(2)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{3 (b) (\text { iii) }}$	A suggestion including any two from the following: -prevent evaporation/loss of water from the soil (1) - to ensure that mass of the calcium chloride only changed (due to water loss from plant) (1)	ignore ref to water loss from pot or roots	
- to ensure that method is valid / it is a fair test (1)	ignore accurate and reliable		

Question Number	Answer	Acceptable answers	Mark
3(c)	An explanation including any two from the following: \bullet glucose production will decrease (1)	glucose production stops	
-photosynthesis will decrease (with increase in waterloss)(1)	photosynthesis will stop / is less efficient	accept from a correct equation	(2)
Question Number	Answer water is used in photosynthesis (1)	Acceptable answers	Mark
3(d)	A description including two from the following:	osmosis (1) - from high concentration to low concentration / down a concentration gradient (1)	not active transport, but ignore diffusion correct references to water potential and solute potential not from where there are more water molecules semi permeable and selectively permeable

Question Number	Answer	Acceptable answers	Mark
$\mathbf{4 (a) (i)}$	D - pancreas		$\mathbf{(1)}$

Question Number	Answer	Acceptable answers	Mark
$\mathbf{4 (a) (i i)}$	B - fatty acids and glycerol		(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{4 (b) (i)}$	protease / pepsin	Reject any other enzyme given	(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{4 (b) (i i)}$	amino acid / amino acids		(1)

Question Number	Answer	Acceptable answers	Mark		
4(b)(iii)	- correct values read from graph (=12 and 9) (1)	award 2 marks for correct answer with no working			
• 3 arbitrary units (1)					ecf
:---					
ignore + and - signs	\quad (2)				
:---					

Question Number	Answer	Acceptable answers	Mark
4(b)(iv)	Any two of the following points - at pH 2 the active site is distorted / enzyme changes shape / enzyme is denatured (1)	ignore any names of enzymes	
-so less successful collisions / less enzyme substrate complexes /enzyme cannot bind to substrate (1) - optimum pH is 1.4 (1)			
- pH 1 is closer to the enzyme's optimum pH (1)	(2)		

Question Number	Answer	Acceptable answers	Mark
4(c)	An explanation including the following points		
	neutralisation of stomach acid	makes intestine more alkaline breaks down fats but not into fatty acids and glycerol	(2)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{5 (a) (i)}$		ignore any labels on the arrow	

Question Number	Answer	Acceptable answers	Mark
$\mathbf{5 (a) (i i)}$	Any two from the following:	accept reverse argument for aorta	
- (blood in pulmonary artery) deoxygenated (1) (blood in pulmonary artery) lower pressure (1)	carrying less oxygen / no oxygen	less force / slower	(2)

Question Number	Answer	Acceptable answers	Mark		
$\mathbf{5 (a) (i i i)}$	Any two from the following:				
• prevent backflow (1)					
• (from ventricle) into atrium					
(1)					description of backflow
:---					
ignore references to left atrium					
and deoxygenated blood	\quad (2)				
:---					

Question Number	Answer	Acceptable answers	Mark
$\mathbf{5 (b) (i)}$	D - ventricle every minute		(1)

Question Number	Answer	Acceptable answers	Mark		
$\mathbf{6 (a)}$	A description including four of the following points	do not accept if there is a ' t '			
- ref to meiosis (1)	4 cells produced (from one parent cell) (1)	haploid (cells) / cells have half the number of chromosomes (1)	cells have one set of chromosomes / 23 chromosomes		
cells are genetically different					
(1)				\quad	(4)
:---					

Question Number		Indicative Content	Mark
QWC	*6(b)	A description including - fertilisation of egg by sperm - ref to fusion of nuclei - forming diploid cell - ref to zygote - (zygote) divides by mitosis - to form identical cells - several mitotic divisions - growth of foetus - examples of how fetus grows eg in height, mass - stem cells in embryo - specialisation / differentiation of (stem) cells into different cell types - examples of different cell types eg neurones, skin cells - development of fetus	(6)
$\begin{array}{\|l\|} \hline \text { Leve } \\ \text { I } \\ \hline \end{array}$	0	No rewardable content	
1	1-2	- a limited description including 2 or more comments about one process - the answer communicates ideas using simple language and uses limited scientific terminology - spelling, punctuation and grammar are used with limited accuracy	
2	3-4	- a simple description including 2 or more comments on 2 processes - the answer communicates ideas showing some evidence of clarity and organisation and uses scientific terminology appropriately - spelling, punctuation and grammar are used with some accuracy	
3	5-6	- a detailed description including 2 or more comments on all 3 processes - the answer communicates ideas clearly and coherently uses a range of scientific terminology accurately - spelling, punctuation and grammar are used with few errors	

Question Number	Answer	Acceptable answers	Mark
$\mathbf{6 (c)}$	Any two from the following:		
-sexual reproduction involves two parents but asexual reproduction only involves one (organism / parent / cell) (1)	ignore any reference to meiosis or mitosis		
-sexual reproduction needs gametes / sex cells but asexual reproduction does not (1)	- sexual reproduction produces genetically different organisms but asexual reproduction produces genetically identical offspring / clones (1)	sexual reproduction results in variation but asexual reproduction does not	(2)

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code UG034044 November 2012
 Welsh Assembly Government
For more information on Edexcel qualifications, please visit our website www.edexcel.com

Rewarding Learning

