# Edexcel Biology GCSE Topics 3.12 to 3.19 - Inheritance 

## Flashcards

What is a chromosome?

What is a chromosome?

A long, coiled molecule of DNA that carries genetic information in the form of genes

## Define gene

(c) (i)오 $\Theta$ cc. ${ }_{\mathrm{BY}}^{\mathrm{NC}} \mathrm{ND}$

## Define gene

A section of DNA that codes for a specific sequence of amino acids which undergo polymerisation to form a protein

What are alleles?

What are alleles?

## Different versions of the same gene

Define genotype

## Define genotype

An organism's genetic composition, describes all alleles

## Define phenotype

## Define phenotype

An organism's observable characteristics due to interactions of the genotype and environment (which can modify the phenotype)

## Define homozygous

Define homozygous

## Having two identical alleles of a gene

 e.g. FF or ff
## Define heterozygous

Define heterozygous

Having two different alleles of a gene
e.g. Ff

## What is a dominant allele?

## What is a dominant allele?

Describes an allele that is always expressed
Represented with a capital letter e.g. F

## What is a recessive allele?

## What is a recessive allele?

An allele that is only expressed in the absence of a dominant allele

Represented with a small letter e.g. f

## What is monohybrid inheritance?

## What is monohybrid inheritance?

## The inheritance of a single gene

Imagine if ... parents who are both heterozygous for sickle cell anaemia (Aa) have a child. Draw a genetic diagram to illustrate this single gene inheritance.

Imagine if ... parents who are both heterozygous for sickle cell anaemia (Aa) have a child. Draw a genetic diagram to illustrate this single gene inheritance.


A female who is homozygous recessive for cystic fibrosis (ff) has a child with a heterozygous male (Ff). Draw a punnett square to illustrate this single gene inheritance.

A female who is homozygous recessive for cystic fibrosis (ff) has a child with a heterozygous male (Ff). Draw a punnett square to illustrate this single gene inheritance.

|  |  | Female genotype |  |
| :---: | :---: | :---: | :---: |
|  |  | f | f |
| Male genotype | F | Ff | Ff |
|  | f | ff | ff |

PKU is a recessive condition. Two heterozygous parents ( Pp ) have offspring. Predict the proportion of offspring that will have PKU.

PKU is a recessive condition. Two heterozygous parents (Pp) have offspring. Using a punnett square, predict the proportion of offspring that will have PKU.
$75 \%$ chance of normal phenotype $25 \%$ chance of PKU phenotype

Female genotype

| $P$ | $p$ |
| :---: | :---: |
| $P P$ | $P p$ |
| $P p$ | $p p$ |

## What is the problem with single gene crosses?

## What is the problem with single gene crosses?

## Most characteristics are controlled by multiple alleles rather than just one

## What are sex chromosomes?

## What are sex chromosomes?

A pair of chromosomes that determine sex:

- Males have an X and a Y chromosome
- Females have two X chromosomes


# Why does the inheritance of a $Y$ chromosome mean that an embryo develops into a male? 

Why does the inheritance of a Y chromosome mean that an embryo develops into a male?

Testes development in an embryo is stimulated by a gene present on the $Y$ chromosome

A couple have a child. Using a punnett square, determine the probability of having offspring that is female.

A couple have a child. Using a punnett square, determine the probability of having offspring that is female.
$50 \%$ chance of female (XX)

|  |  | X | X |
| :---: | :---: | :---: | :---: |
| Male genotype | X | XX | XX |
|  | Y | XY | XY |

Other than using a punnett square, how else can monohybrid inheritance be represented?

Other than using a punnett square, how else can monohybrid inheritance be represented?

Using a family pedigree

## What is a sex-linked characteristic? (biology only/higher)

## What is a sex-linked characteristic?

 (biology only/higher)A characteristic that is coded for by an allele found on a sex chromosome.

Why are the majority of genes found on the X chromosome rather than the Y chromosome? (biology only/higher)

Why are the majority of genes found on the $X$ chromosome rather than the Y chromosome? (biology only/higher)

The $X$ chromosome is bigger than the $Y$ chromosome so more genes are carried on it.

Why are men more likely to show the phenotype for a recessive sex-linked trait than women? (biology only/higher)

## Why are men more likely to show the phenotype for a recessive sex-linked trait than women? (biology only/higher)

- Many genes are found on the $X$ chromosome that have no counterpart on the Y chromosome
- Women (XX) have two alleles for each sex-linked gene whereas men (XY) often only have one allele . $\mathrm{C}_{\text {. only }}$ one recessive allele is required to produce the recessive phenotype in males

Haemophilia is a recessive $X$-linked condition. A carrier female and a normal male have a son. What is the probability of the child having haemophilia? (biology only/higher)

Haemophilia is a recessive X-linked condition. A carrier female and a normal male have a son. What is the probability of the child having haemophilia? (biology only/higher)

50\% chance of haemophilia ( $X^{h} Y$ )


Give an example of a characteristic that is determined by more than one allele (biology only)

Give an example of a characteristic that is determined by more than one allele (biology only)

Blood group is determined by three
alleles: $\mathrm{I}^{\mathrm{A}}, \mathrm{I}^{\mathrm{B}}, \mathrm{I}^{\mathrm{O}}$

## Name the four different blood groups (biology only)

Name the four different blood groups (biology only)
$A, B, A B, O$

What are codominant alleles?
(biology only)

## What are codominant alleles? (biology only)

Alleles that equally contribute to an organism's phenotype. They are expressed to an equal extent.

## Describe codominance in blood groups (biology only)

Describe codominance in blood groups (biology only)

- $I^{A}$ and $I^{B}$ are codominant
- $I^{A} I^{B}$ gives the blood group $A B$


## Why does $I^{A} I^{\circ}$ give blood group $A$ ? (biology only)

Why does $\mathrm{I}^{\mathrm{A}} \mathrm{I}^{\mathrm{O}}$ give blood group A? (biology only)

- $\mathrm{I}^{\mathrm{O}}$ is recessive to $\mathrm{I}^{\mathrm{A}}$
- $I^{\mathrm{A}}$ is dominant and is expressed giving blood group A


## What are the possible genotypes for blood group B? (biology only)

What are the possible genotypes for blood group B? (biology only)
$\left.\left.\right|^{B}\right|^{\circ}$
$\left.\left.\right|^{B}\right|^{B}$

What is the genotype for blood group O? (biology only)

What is the genotype for blood group O ? (biology only)

A female with genotype $I^{\mathrm{B}} \rho^{\circ}$ and a male with genotype $I^{A} I^{O}$ have a child. Use a punnett square to predict the potential phenotypes of the offspring (biology only)

A female with genotype $I^{B} I^{\circ}$ and a male with genotype $I^{A} I^{\mathrm{O}}$ have a child. Use a punnett square to predict the potential phenotypes of the offspring (biology only)

|  |  | Female genotype |  |
| :---: | :---: | :---: | :---: |
|  |  | $I^{B}$ | $1^{\circ}$ |
| Male genotype | $I^{A}$ | $\left.A^{A}\right\|^{B}$ | $A^{\circ} \rho^{\circ}$ |
|  | $I^{\circ}$ | $\left.I^{B}\right\|^{\circ}$ | $\left.1^{\circ}\right\|^{\circ}$ |

$$
\begin{aligned}
& 25 \% A B\left(\left.\left.\right|^{A}\right|^{B}\right) \\
& 25 \% A\left(\left.I^{A}\right|^{\circ}\right) \\
& 25 \% \mathrm{~B}\left(\left.\left.\right|^{B}\right|^{O}\right) \\
& 25 \% O\left(\left.I^{O}\right|^{O}\right)
\end{aligned}
$$

