WJEC (Wales) Biology A-level Topic 3.2 Photosynthesis Questions by Topic **1.** The diagram below shows the events involved in photosynthesis. (a) (i) Name stages Y and Z in the light dependent stage. | | נין | |----------|-----| | Υ | | | | | | Z | | | | | | | | (ii) What is represented by circles A? (iii) Complete the boxes above to show the reactions occurring at point B. [1] [1] (v) Name the molecule entering at **C**. [1] (vi) What compound is produced at **D**? [1] ## (b) The photomicrograph below is of a chloroplast Using the letters on the photomicrograph, complete the following table. [4] | | Area | Letter | Name of region | | |--|--|--------|----------------|--| | | Where the light dependent stage occurs | | | | | | Where the light independent stage occurs | | | | | | | | | | | (c) Plants take up minerals from the soil. These are combined with the products of the light independent | | | | | | stage to produce other molecules needed by the plant. | | | | | | Give three examples of minerals taken up from the soil and state what molecules are produced when | | | | | | each example combines with the products of the light independent stage. | | | | | [3] 2. The electron micrograph below shows part of a palisade cell, including one chloroplast. (a) Choose a letter or letters from the electron micrograph above that indicate. | i) one granum, | | |---|------------| | ii) parts of the chloroplast where photosynthetic pigments are located, | | | iii) where reactions of the Calvin cycle occur | | | b) The Calvin cycle involves the conversion of inorganic carbon dioxide into useful organic compounds | i . | | i) Explain how carbon dioxide is used in the production of glycerate-3-phosphate. | | | | [2 | ii) Describe how glycerate-3-phosphate is converted to triose phosphate. | | | | [3 | | | | | | | | | | | | | | | | | c) (i) State why only some of the triose phosphate produced by the Calvin cycle can be used to produc | ········ | | nexose phosphate. | 0 | | | [1 | | | | | | | | | | | | (ii) Suggest how many times the Calvin cycle must occur to produce one molecule of glucose. | |----|---| | 3. | Diuron is a weed-killer which is a very specific and sensitive inhibitor of photosynthesis. It blocks the electron carrier binding site on photosystem II. This stops the electron flow from where it is generated, in photosystem II, to the electron carrier. This reduces the ability of the plant to convert light energy into chemical energy. | | | Diuron only blocks electron flow from photosystem II. It has no effect on photosystem I or other reactions in photosynthesis, such as light absorption or carbon fixation in the Calvin cycle. | | | (a) Explain the effects of Diuron on non-cyclic photophosphorylation and why cyclic photophosphorylatio is not affected. | | | [- | | | | | | | | | | | | (b) Suggest why a plant would die when the weedkiller Diuron is sprayed onto it. | | | [: | | | | | (c) The Calvin cycle is shown below with some of the intermediate compounds drawn. | |--| | (i) Name compounds 1, 2 and 3 shown on the diagram above. | | 1 | | | | 2 | | 3 | | |--|-----| | | | | ii) What is the role of ribulose bisphosphate carboxylase (RuBisCo) in the Calvin cycle? | | | | [1] | | iii) Name molecules X and Y shown on the diagram above. | | | my Name melecales X and T onewn on the diagram above. | [2] | | (| | | ······································ | | | | | | iv) Describe simply what is happening at each stage of the cycle indicated by ${f A}$, ${f B}$ and ${f C}$ on the diagra above. | m | | | [3] | | ٠ | | | | | | | | | D | | | | | **4.** A student carried out a practical to separate the pigments in spinach leaves and the results are shown in the diagram below. (a) The blue-green pigment is chlorophyll a. State precisely where chlorophyll a is found in a photosynthetic cell. [2] (b) The Rf value of the pigments can be calculated using the following formula. Calculate the Rf value of the yellow band and use the following table of Rf values to identify it. Show your working. [3] | Rf value | **** | | |----------|------|--| | Rt value | - | | | Pigment | Rf value | |---------------|----------| | xanthophyll | 0.28 | | chlorophyll b | 0.42 | | chlorophyll a | 0.59 | | carotene | 0.98 | | dentity of yellow band | | |------------------------|--| |------------------------|--| (c) Some of the pigments were extracted from the chromatogram separately. The percentage of light absorbed at wavelengths from 400 to 700 nm by each of them was measured and a chart produced. | (i) | Name this type of chart. | [1] | |----------|---|-----| | (ii)
 | Explain the results in the 500 to 600 nm range. | [1] | | | | | | (iii) | Explain the advantage to plants of having more than one pigment in their leaves | [2] | | | | | | | | | | | | | | | | | | (<i>a)</i> | production | | photosynthe | sis to explain | i the lole of | mese pigments it | [3] | |----------------|---|---|-------------|---|---|---|------------| | *********** | ****************** | *************************************** | | | | | ******** | | 84711110004711 | | , | | *************************************** | *************************************** | ••••• | 0042140500 | | ************ | | *************************************** | | *************************************** | *************************************** | | ********* | | ******* | ****************** | | | ••••• | | | -1***** | | ****** | | | | | | *************************************** | | | 04>13<50441> | | | | | | *************************************** | | | *********** | | | | | | | ******** | | | | | | | | | | | 04>17<+04419 | ::::::::::::::::::::::::::::::::::::::: | ************************* | | >************************************ | ****************************** | | ********** | | | | | | | | | | 12 5. The important pigments in most chloroplasts are chlorophyll a, chlorophyll b, and carotene. The graph below shows the absorbtion spectrum of these pigments along with the action spectrum for photosynthesis. | (c) | Why do most leaves characteristically have a green colour? | [1] | |-----|--|------------| | (d) | The graph also shows the action spectrum for photosynthesis. Describe the relationship between the absorption spectrum and the action spectr and explain what this relationship tells us about light absorption and photosynthesis. | | | (e) | The following diagram is of a photosystem. R S | | | | (i) Identify regions R and S shown on the diagram. | [2] | | | (ii) Indicate, with a cross (×) on the diagram, where you would expect to fi chlorophyll a. | ind
[1] | | | (iii) State exactly where in the chloroplast you would expect to find photosystems. | [1] | | 6. | (a) | It is important that humans try to maintain or reduce the carbon dioxide levels in the atmosphere. | | | | | | |----|-----|--|---|----|--|--|--| | | | (i) | Name two processes which increase carbon dioxide levels. [1 | | | | | | | | (ii) | State which organelle in a plant cell is responsible for photosynthesis. [1] | | | | | | | | (iii) | State precisely how the process of photosynthesis reduces the carbon dioxidelevels. | | | | | | | | | | | | | | | | | ********* | | | | | | | | (b) | Sugg | est why the following processes are required for cellular respiration to continue. | | | | | | | | (i) | Light independent stage of photosynthesis; [1 |] | | | | | | | (ii) | Light dependent stage of photosynthesis. [1 | | | | | | | | ********** | | •• | | | | | | | | | | | | | 7. Calvin did experiments on a series of reactions which is now called the light independent stage of photosynthesis. The diagram shows one such experiment. The apparatus was set up as shown and brightly illuminated. The clock was started on the introduction of radioactive hydrogen carbonate ions. Autoradiograms from one such experiment are shown below: | (a) | What is | the ma | in difference be | [1] | | | |-----------|-----------------|---------|--------------------------------------|------------------|---|----------------------| | (b) | of know | n subst | tances. He ther | | urk spots, Calvin made a | | | | | | Glycine | Glucose | Triose phosphate | | | | | + | | + | + | | | | | | eraldehyde-3-
phate (GP) | Malic acid | Ribulose
bisphosphate
(RuBP) | | | | | + | | + | - | | | | | | oradiograms an
spots A-C . | nd the ones show | on in part (a) to ident | ify compounds
[1] | | | S | Spot | | Name of co | ompound | | | | | A | | | | | | | | В | | | | | | | | С | | | | | | (c) | Use the formed. | autora | adiograms to | determine which | were the first and sec | ond substances [2] | | | First . | | | | | | | | Second. | | | | | | | (d) | | | | | ement would have beer nade this compound? | n needed in the [1] | | ********* | ••••• | | | | | | (e) Calvin worked out that the ribulose bisphosphate is regenerated so that the reactions are in the form of a cycle, which is summarised below: Compound X is a hydrogen carrier and compound Y is the universal energy currency in cells. - (i) Complete the diagram to show how compounds X and Y change during the cycle. [2] - (ii) Which series of reactions provides the compounds X and Y in chloroplasts? [1] - (iii) State precisely where the production of X occurs in chloroplasts. [1] - (f) How many molecules of triose phosphate would be needed to synthesise three molecules of glucose? [1] (Total 10 marks) 8. The diagram summarises the light independent reactions of photosynthesis (Calvin cycle). | (a) | Name the molecule which enters the cycle at point X . | [1] | |-----|---|--------------| | (b) | State the two products of the light dependent stage of photosynthesis that are required in the Calvin cycle. | iired
[2] | | | | | (c) Using the above diagram, give the letters of the two steps where the chemicals named in (b) are required. [2] (d) State **one** possible fate of the hexose sugars produced. [1] (Total 6 marks) 9. The electron micrograph below shows a chloroplast, taken from a eukaryotic organism. (a) (i) **Identify using a clearly labelled arrow** where photosystems are found on the electron micrograph above. [1] The diagram below represents one photosystem. (ii) Identify the pigment found at X. [1] | (b) | Explain the role of photosystems in the light dependent stage of photosynthesis. | | | | | |-------|--|--|--|--|--| | | | | | | | | | | | | | | | ••••• | | | | | | | ••••• | | | | | | | | | | | | | | (C) | Following the synthesis of carbohydrate, a number of inorganic ions are needed to synthesise other biological molecules. | | | | | | | State three different biological molecules and the inorganic ions required to synthesise them. [3] | | | | | | | I | | | | | | | II | | | | | | | III | | | | | | (d) | Herbicides inhibit photosynthesis in many ways. One group of herbicides block electron transport, so chlorophyll continues to absorb light energy but cannot pass this energy on. Light energy not used in electron emission damages chlorophyll leading to chlorosis. Desiccation occurs because of the formation of oxygen free-radicals, which are highly destructive to cell membranes. | | | | | | | Use the information given and your own knowledge to explain how blocking electron transport from photosystems with this herbicide could lead to the death of a plant. [4] | | | | | | | | | | | | | | | | | | | The light dependent stage of photosynthesis can be represented by a diagram called the Z-scheme, shown below. | (a) | (i) | Describe the process at A which replaces the electrons lost from pland explain how electrons are used at B and C . | hotosystem II
[3] | |-----|-----|--|----------------------| (ii) **Draw a clear line** labelled **X** on the Z-scheme diagram above, to indicate the movement of electrons in cyclic photophosphorylation. [1] (b) The modern representation of a photosystem is shown in the diagram below. | (i) | Apart from chlorophyll a, name three other pigments you would expect to be prein a photosystem. | sent
[2] | |------|--|-------------| | | | | | | | | | | | | | (ii) | State precisely where a photosystem would be found in a plant cell. | [1] | | | | | (c) An experiment was carried out to investigate the effect of leaf colour on the rate of photosynthesis. Leaves placed in water naturally float, but if small discs of leaves are punched out of the leaves and the air in the discs is replaced by hydrogen carbonate solution (a CO₂ source), they will sink. The time taken for 15 light green leaf discs to float to the top of the solution when illuminated from below can be determined and gives an estimate of the rate of photosynthesis. This was repeated for dark green leaf discs. The results of such an experiment are shown below. | Order of leaf | Time taken for each leaf disc to rise / seconds | | | | |-------------------------|---|--------------------------|--|--| | discs rising | Dark green colour discs | Light green colour discs | | | | 1 st | 102 | 296 | | | | 2 nd | 157 | 324 | | | | 3 rd | 186 | 358 | | | | 4 th | 201 | 360 | | | | 5 th | 240 | 420 | | | | 6 th | 260 | 422 | | | | 7 th | 287 | 665 | | | | 8 th | 317 | 666 | | | | 9 th | 396 | 805 | | | | 10 th | 404 | 1000 | | | | 11 th | 474 | 1108 | | | | 12 th | 535 | 1173 | | | | 13 th | 622 | 1674 | | | | 14 th | 808 | 1821 | | | | 15 th | 898 | 2388 | | | | Mean time | | 898.7 | | | | (i) | Calculate the mean time taken for the 15 dark green discs to float and insert your answer in the table. [1] | |-------|---| | (ii) | Explain what caused the discs to rise in the solution. [2] | | (iii) | Explain why the darker green leaf discs rose faster than the lighter green discs. [4] | (i) | Describe how would you use the technique described in (c) to invest of light wavelength on photosynthesis. | tigate the effect
[4 | |------|--|-------------------------| (ii) | Predict the results that you would expect from this experiment. | [2] | | | Tredict the results that you would expect from this experiment. | | | | | | | | | | Tomatoes are an important food crop that can be grown in commercial greenhouses. The greenhouses often have cooling fans. When a tomato plant is exposed to light the following reactions take place in the stroma of a chloroplast. (a) (i) Identify substances X and Y. [1] X Y (ii) Name enzyme Z. [1] (b) In the absence of light, the concentration of glycerate-3-phosphate (GP) in the chloroplast stroma increases. This is shown on the graph below. | Explain the shape of the graph for both GP and TP when the plant is in the dark. [5] | | |--|--| |