WJEC (Wales) Biology A-level Topic 1.5: Nucleic Acids Questions by Topic

1. The diagram below shows a simple nucleotide.

(a) On the diagram above, draw a circle around the component that contains nitrogen.

(b) Describe two differences between a DNA nucleotide and an RNA nucleotide.

[2]

An experiment was carried out to determine the relative percentages of the bases in DNA from various organisms. The results are shown in the table below.

0 f DNA	Relative percentage of base in sample					
Source of DNA	Adenine	Guanine	Thymine	Cytosine		
human	30.9	19.9	29.4	19.8		
sea urchin	32.8	17.7	32.1	17.3		
wheat	27.3	22.7	27.1	22.8		

[1]

	(c) DNA is a double stranded molecule. Explain how the data in the table supports the	
	concept of complementary base pairing.	
		[2
2.	(a) The diagram below shows a unit which makes up nucleic acids.	
	A Q	
	$igg _{B}$	
	(i) Name the structural unit shown.	[1]
	(ii) Name component A	[1]
	(iii) Name component B in DNA and	[1]
	DNA	
	RNA	
	(iv) Name the four components found in DNA, represented by C.	[2]
,		

(b)	Describe how the structural units, drawn in part (a), are arranged in DNA molecules.	
		[4]
		<u>.</u>
		·····-
(c) [Describe the function of DNA molecules in cells.	
		[1]

The diagram represents stages of protein synthesis. 3.

(i)	Give the name of the processes taking place at X and Y.	[2]
	X	
	Y	
	(i)	v v

- (ii) On the diagram label the following structures using clear lines and the letters given. [8]
 - M = messenger RNA
 - N = nuclear pore
 - O = RNA polymerase
 - P = codon
 - Q = ribosome
 - R = transfer RNA
 - S = three hydrogen bonds between complementary bases T = template/sense strand of DNA

(b) Transfer RNA (tRNA) molecules are very specific and will only carry one type of amino acid depending on three unpaired nitrogenous bases on the molecule (the anticodon). The table shows the type of tRNA molecules which combine with certain amino acids.

Amino acid	anticodon
glycine	CCU
cysteine	ACA
arginine	GCA
alanine	CGU

Using the information given, state the nucleotide sequence on the **DNA molecule** which codes for the following polypeptide. [2]

glycine-cysteine-arginine-alanine.

(Total 12 marks)

4. The diagram represents the molecular structure of part of a DNA molecule.

(a) Name part A.

[1]

.....

				A molecule						
						T-A-T-C-	G			
		(i)		ble below of DNA.	write the let	ters for the	sequenc c	of bases o	f the comp	lementar [1
			I	ONA mole	cule	Т	A	T	С	G
			com	plementar	y DNA					
		(ii)	guanine Calculat		rsis of a sar entage of the g.	_				
						An	swer			
									(Tota	l 4 mark
way. (a)					nether DNA semiconser	-		servative	e or semico	Jiisei va
						-		servative	e or semico	JIISCI VAI
	The to the he gener were then media	ais management of the nation place um w	erium Es isotope washed in a reas then	the term s cherichia as a sour the DNA and trans ia were re medium a determine	coli (E.col ce of nitrogin all of the ferred to a emoved and spun in ed.	vative repl was cul gen ¹⁵ N inse bacteria of the second insecond in the second in a centrif	tured in stead of toontained and all to releauge. The	a nutrie he norm I the hea lowed to ise the D position	nt broth, nal ¹⁴ N. A replicate. DNA. The	contain fter seve e ¹⁵ N. Tl After ea DNA v
(a)	The to the he gener were then media	ais management of the nation place um w	erium Es isotope washed in a reas then	the term s cherichia as a sour the DNA and trans ia were re medium a determine	coli (E.col ce of nitrogin all of the ferred to a emoved and spun in	vative repl was cul gen ¹⁵ N inse bacteria of the second insecond in the second in a centrif	tured in stead of toontained and all to releauge. The	a nutrie he norm I the hea lowed to ise the D position	nt broth, nal ¹⁴ N. A replicate. DNA. The	contain fter seve e ¹⁵ N. TI After ea DNA v
(a)	The to the head gener were then media	a is more acternation place and when we have a light of the control of the contro	eant by merium Estisotope is all of the washed in, bacter and in a the particular the particular wan bacteria,	the term s cherichia as a sour the DNA and trans ria were re medium a determine	coli (E.col ce of nitrogin all of the ferred to a emoved and spun in ed. DNA mole ow the rel two variab	vative replusive september 15 N instance of the lacteria of th	tured in stead of to relead uge. The	a nutrie: the norm the heatouse the E position at the 15N	nt broth, nal ¹⁴ N. A replicate. DNA. The of the D	contain fter seve e ¹⁵ N. TI After ea DNA v
(a)	The to the head gener were then media	a is more acternation place and when we have a light of the control of the contro	eant by merium Estisotope is all of the washed in, bacter and in a the particular the particular wan bacteria,	the term s cherichia as a sour the DNA and trans ia were re medium a determine art of the l	coli (E.col ce of nitrogin all of the ferred to a emoved and spun in ed. DNA mole ow the rel two variab	vative replusive september 15 N instance of the lacteria of th	tured in stead of to relead uge. The	a nutrie: the norm the heatouse the E position at the 15N	nt broth, nal ¹⁴ N. A replicate. DNA. The of the D	contain fter seve e ¹⁵ N. TI After ea DNA v

(c) The diagram represents the results which they obtained.

[3]

(ii) Complete diagrams C and D to show the pattern and relative proportions of DNA you would expect. [2]

(Total 10 marks)

The diagram below shows a molecule of ATP.

- (a) (i) Label the component parts of the molecule. [2]
 - (ii) Give the full name of the molecule. [1]
- (b) (i) In the spaces indicated below, use drawings similar to the one above to show the changes that this molecule undergoes in cells. [1]

(ii) Apart from muscle contraction, name one *other* process in cells which requires energy. [1]

7. The diagram below shows the DNA structure proposed by Watson and Crick in 1953.

If the double helix takes 3.4nm to make one complete turn and base pairs are 0.34nm

(a) If the double helix takes 3.4nm to make one complete turn and base pairs are 0.34nm apart, how many base pairs would you expect to find in five complete turns?

Show your working.

[2]

Answer =

(b) Give a reason why the diagram shown above must be DNA rather than RNA. [1]

(c) The table below shows the bases guanine and cytosine as percentages of the total nucleotides present in three different micro-organisms.

Micro-	Base composition (%)			
organism	G	С		
yeast	18.7	17.1		
bacteria	36.0	35.7		
virus	42.0	13.9		

(1)	Explain your answer.	[2]
******		****
*******		••••••
••••••		•••••
(ii)	State the type of base to which cytosine belongs.	[1]
		Г

- Protein synthesis involves two stages, transcription and translation. Different types of RNA are involved in each stage.
 - (a) The table below shows the percentages of the different types of RNA present in a rabbit body cell.

RNA	Percentage of total RNA
RNA present in nucleus	11.5
mRNA	3.5
rRNA	69.5
tRNA	15.5

Name the organelle that would contain the greatest percentage of RNA. Explain

	your answer. [1
(ii)	The total mass of RNA in a typical rabbit cell contains about 5000000000000000000000000000000000000
	Calculate the approximate number of nucleotides contained in the tRNA of a typica rabbit cell. Give your answer in standard form to two significant figures. [3]
	Number of nucleotides in tRNA =
(iii)	Explain why there would be large numbers of different mRNA molecules in a rabbi cell but only a maximum of 64 different tRNA molecules. [3]

(i)

9. The diagram below illustrates replication of DNA in cells.

(a) (i) Describe the sequence of events shown within the dotted rectangle in the diagram above.

[3]

(ii) What is the role of DNA polymerase in the process?

[1]

(b) Explain why the process is referred to as 'semi conservative'.

Thor	ea ara 2 tunas of nucleic acid. DNA and D	NI A	
(a)	re are 2 types of nucleic acid: DNA and R. Complete the table below to describe the and RNA.		ure of
	DNA	RNA	
(b)	A sample of DNA was analysed, 23% of the percentage of nucleotides which con	of the nucleotides contained guanin tained adenine. Show your working	e. Calo
*********			************

11.

In 1958, Matthew Meselson and Franklin Stahl conducted a series of experiments that demonstrated that DNA replication is semi-conservative.

The images below show some of their results.

Other theories of DNA replication included:

- conservative replication, in which the original DNA is retained as a double stranded molecule; and
- dispersive replication, where the original DNA is split into many fragments which are then dispersed throughout the replicated molecules.

Using your own knowledge of Meselson and Stahl's experiments, explain how their experiment and the results shown in the image supported the theory of semi-conservative replication. Predict how the results would have differed if the other theories had been correct. Explain your answer. [9 QER]

Name the parts A, B and C.

	[3]
A	
В	
c	
(b) Describe how a polymer of DNA would be different from a polymer of RNA.	
	[2]

- ATP is regarded as a universal energy currency as it is used in all organisms for cellular processes.
 - (a) Draw a simple, fully labelled diagram of ATP.

[2]