WJEC (Eduqas) Biology A-level Topic 1.3: Respiration Questions by Topic - Mark Scheme

Questio	n	Marking details	Marks Available	Question
(a)	(i)	All three correct for one mark	1	(e)
		Citrate 6		
		α-ketoglutarate 5		
		Succinate 4		
	(ii)	4C oxaloacetate plus 2 C acetyl;	2	
		1C lost/ CO ₂ lost {before α-ketoglutarate/from isocitrate}/		
		isocitrate is decarboxylated		
		and 1C lost/ CO_2 lost {from α -ketoglutarate/ before succinate} /		
		α-ketoglutarate decarboxylated;		
(b)		Reduced NAD and reduced FAD pass electrons to the Electron	Max 4	(f)
		Transport Chain;		
		The <u>high energy</u> electrons/ electrons provide energy;		
		(Used to power) proton pumps;		
		On the inner mitochondrial membrane/cristae;		(a)
		Which pump H*into the inter-membrane space;		(g)
		Reduced NAD powers all 3 pumps/Reduced FAD passes to		
		2 nd pump/OWTTE;		
		ATP synthesis = neutral		
(c)		Dehydrogenase;	2	
		decarboxylase;		
(d)		(Skeletal) muscle;	2	
		High numbers of mitochondria and easy to access/OWTTE;		
(e)		Low with pyruvate	2	
		{The pathway leading to Acetyl Co A/link reaction} is not		
		working/{Enzymes/dehydrogenase/decarboxylase} are not active/There is no reduced NAD for the Electron Transport		
		Chain (so no O ₂ needed);		
		High with α-ketoglutarate		
		The pathway between α-ketoglutarate and the rest of the cycle	9	
		is working correctly/There is enough reduced {NAD/FAD} to drive the ETC (which needs O ₂);		
(f)		Enzymes catalysing the conversion of the molecule to the nex		
		in the cycle are not functional/The {molecule/named example	}	
		cannot be converted to the {next intermediate/named example}/build up of reduced NAD and FAD;		
(g)		The {Krebs cycle/link reaction/Electron Transport Chain} is	Max 2	
		not working (as well);		
		Pyruvate levels {build up/increase/higher}; (Excess) {pyruvate/NADH ₂ } is converted to Lactate;		
		Question 6 Total	ıl [16]	

Question		on	Marking details	
2	(a)		mitochondrion; matrix;	2
	(b)	(i)	pyruvate to acetyl Co-A; iso citrate to oxaloglutarate and oxaloglutarate to succinate;	2
		(ii)	decarboxylation;	1
		(iii)	diffuses out of mitochondria; into blood/ tissue fluid/ plasma; carried as hydrogen carbonate ions; breathed out;	3 max
	(c)		dehydrogenation/ dehydrogenase activity/ oxidation of intermediates/compounds; removal of hydrogen ions; stepwise/series of reactions; five pairs of hydrogens; NAD to NADH ₂ / reduced NAD/ NADH ⁺ +H ⁺ ;	3 max
	(d)		Pyruvate is used to form lactic acid; Regenerate NAD;	2
			Question 2 total	[13]

Questi	on	Marking details	Marks Available
(a)	(i)	phosphate / Pi / inorganic phosphate/ iP/ PO ₄ 3-;	1
	(ii)	W is outer (mitochondrial) membrane; Z is the (mitochondrial) matrix;	2
	(iii)	most concentrated in part X;	1
(b)		(reduced NAD) supplies protons; and brings (high energy) electrons; electrons {supply energy for proton pumping/ fuels proton pumps};	2
(c)	(i)	P = ADP/ ADP + Pi } Q = ATP	1
	(ii)	cytoplasm/ cytosol;	1
	(iii)	glucose is phosphorylated by ATP; two phosphorylations / production of hexose/fructose (bi)phosphate; hexose (bi)phosphate is split (from 6C to two 3C);	3
(d)	(i)	allows reduced NAD to be converted back to NAD/ regenerate reduced NAD/ without oxygen reduced NAD not converted to NAD by {electron transport chain/ krebs/ link reaction}; allowing ATP production/ without oxygen no ATP production by oxidative phosphorylation; allows {glycolysis/ substrate level phosphorylation} to continue/ ORA; No O ₂ to act as the final {hydrogen/ electron} acceptor/ NADH {must find an alternative hydrogen acceptor/ must use pyruvate};	3
	(ii)	Only glycolysis required/ shorter metabolic pathways; oxygen supply too slow/ no need for oxygen {supply/diffusion}; no need to carry out Krebs cycle/ electron transport / oxidative phosphorylation; no need to build up a proton gradient; no need to transport pyruvate into the mitochondrion;	Max 1
		Question 5 Total	[15]

Que	stion		Marking details	Marks Available
4	(a)		<u>Similarities</u>	max 2
			(Both contain) a 5 carbon sugar;	
			Both have two phosphate groups;	
			Both contain (two) nitrogenous bases/ adenine/ organic base;	
			Dinucleotide;	
			Accept adenosine for 1 mark if MP1 and 3 not awarded	
			Differences	1
			FAD only contains one (ring form) sugar and NAD contains 2/	
			One 5C sugar is in its linear form in FAD and both 5C sugars are in	
			ring form in NAD/ NAD contains nicotinamide and FAD contains	
			flavin/ FAD has a three ring base and NAD has one ring base;	
	(b)	(i)	The bond between the {terminal/last two} phosphate groups on ATP;	1
		(ii)	Does not involve the ETC/complex series of carriers and pumps;	Max 2
			Does not need stalked particles/ATP synthetase;	
			Does not need an electrochemical gradient/eq;	
			Does not require oxygen;	
			Accept 'Does not require mitochondria' as alternative to MPs 1, 2,3	
		(iii)	Arrows showing	2
			In the conversion of triose phosphate to pyruvate;	
			After the 5C compound in the Kreb's cycle;	
		(iv)	4;	2
			2;	
	(c)	(i)	In the mitochondrial matrix;	1
		(ii)	Dehydrogenase AND decarboxylase;	1
			Question ⁴ . Total	[12]

5

	Glycolysis	Link	Krebs	Oxidative
	Olycolyclo	reaction	cycle	phosphorylation
		reaction	cycle	phosphorylation
Substrate level				
phosphorylation	✓		✓	
takes place				
NAD is reduced	✓	√	✓	
FAD is reduced			✓	
Dehydrogenation	1	/	/	
takes place	*	*	*	
Decarboxylation		/	✓	
takes place			Ť	
Oxygen is used				✓
ATP is produced	✓		✓	✓
Takes place in the	✓			
cytoplasm	*			
Takes place in the				
mitochondrial matrix		√	V	
Takes place in the				
inner mitochondrial				/
membrane				•
Coenzyme A is used		/		
as an acceptor		•		

One mark per row

Question 5 Total [11]

Marking details	Marks available					
Marking details	A01	A02	AO3	Total	Maths	Prac
Link reaction and Krebs cycle	9		8			3
Pyruvate transported in from cytoplasm						
Correct description of link reaction						
 Decarboxylation and dehydrogenation to produce 2C Acetyl 						
coenzyme A						
Correct description of Krebs cycle						
 Correct description of 4C + Acetyl coenzyme A giving 6C 						
molecule.						
 Progressive removal of C as CO₂ to reform 4C molecule 						
 Removal of H/use of dehydrogenase/ use of decarboxylase 						
 Formation of Reduced NAD and Reduced FAD 						
Electron transport chain						
Correct description of ETC						
use of oxygen as final electron acceptor						
Use of Reduced NAD and Reduced FAD as source of high	-					
energy electrons for ETC	7	2				
Formation of an EC gradients/ chemiosmosis						
subsequent synthesis of ATP by the use of ATP synthase in						
stalked particles						
Benefits						
Bacteria have a source of pyruvate/oxygen						
Constant environment e.g. pH/ water potential						
Protection from predation						
E						
Eukaryote – increased ATP availability – increased						
metabolic rate/increased cell division/increased active						
transport/able to metabolise other respiratory substrates/e.g.						
fatty acids						
Compartmentalisation						
Increase in size/ complexity						
7-9 marks	. X					8
Detailed content from						
Link reaction and Krebs						
+ Eectron Transport chain						
+ Benefits The candidate constructs an articulate, integrated account, correctly						
linking relevant points, such as those in the indicative content, which						
shows sequential reasoning. The answer fully addresses the question						
with no irrelevant inclusions or significant omissions. The candidate						
uses scientific conventions and vocabulary appropriately and						
accurately.						
4-6 marks						
Content from any two parts out of						
Link reaction and Krebs						
Electron Transport chain						
Benefits The conditions constructs an account correctly linking come relevant						
The candidate constructs an account correctly linking some relevant points, such as those in the indicative content, showing some						
reasoning. The answer addresses the question with some omissions.						
The candidate usually uses scientific conventions and vocabulary						
appropriately and accurately.						
1-3 marks						
Content from one part out of						
Link reaction and Krebs					1	
Or Electron Transport chain						
Or Benefits						
The candidate makes come relevant points, such as those in the						
indicative content, showing limited reasoning. The answer addresses the question with significant omissions. The candidate has limited use					1	
the question with significant omissions. The candidate has limited use of scientific conventions and vocabulary.						
0 marks						
The candidate does not make any attempt or give a relevant answer						
worthy of credit.						
Quantion 6 total	7	2	0	0	0	0
Question 6 total	7	2	0	9	0	0

Question		on	Marking details	Marks Available
7	(a)		A = Triose phosphate / TP; B = Pyruvate / pyruvic acid; C = Acetyl coenzyme A / acetate / Coenzyme A; D = NAD / NADH ₂ ; E = CO ₂ ; F = O ₂ ;	6
	(b)	(i)	inner mitochondrial membrane / cristae;	1
		(ii)	Hydrogen;	1
			Question 7 Total	[8]

(<u>a</u>)	pyruvic acid / pyruvate is converted to two carbon acetate;		
	two mo	plecules of reduced NAD formed;	
	<u>loss</u> of	two molecules of carbon dioxide;	
	actate	combines with coenzyme A (to form acetyl coenzyme A)	[3]
41.5	<i>(</i> 2)		
(b)	(<u>i)</u>	cytoplasm;	
	(ii)	matrix of mitochondrion	[2]
(c)	(i)	(Decarboxylation) is the removal of carbon dioxide / carboxyl group;	
		(Dehydrogenation) is the removal of hydrogen	[2]
	(ii)	P and Q	[1]
(d)	(<u>i</u>)	one	[1]
	(ii)		

	In the link reaction using NADH	In the Krebs Cycle using NADH	In the Krebs Cycle using FADH
Number of Molecules of ATP Formed	3	6	2

[2]

(iii) NAD has three pumps FAD has two pumps.

[1]

[Total 12 marks]

).	(a)	(i)	Glycolysis	cytoplasm;		3
			Link reaction	matrix (of mitochondria);		
			Krebs Cycle	matrix (of mitochondria);		
			[1 mark each row]			
		(ii)	Glycolysis;			1
	/h1	(2)	Code on disside (CO)			
	(b)	(i)	Carbon dioxide/ CO ₂ ;			1
		(ii)	Decarboxylase;			1
	(c)		Substrate- level phosp	phorylation	2; and 6;	4
	(-)			verted to a 3C sugar which	_,,	Ī
			enters respiration at the	-	3;	
			ATP is used in phospi	horylation	1;	

10. (a) (į)	phosphate; pentose/ribose; adenine (all correct for 2; 1 error = 1) (not: adenosine/nitrogenous base)	2
(ii)	adenosine triphosphate (not: triose phosphate/ATP)	1
(b) (j)	ATP <u>drawn</u> as in part a in upper box; ADP two Ps attached <u>+ 1P</u> not attached in lower box.	1
(ii)	protein synthesis/biosynthesis/active transport/nerve conduction/cell division/avp (not: metabolism/growth/movement)	1
(c) (i)		2

Stage	Precise location in cell	Number of molecules of ATP	Number of molecules of NADH ₂	Number of molecules of FADH ₂
Glycolysis	cytoplasm	2 (net)	2	0
Link reaction	matrix of mitochondrion	0	2	0
Krebs cycle	matrix of mitochondrion	2	6	2

(1 mark for each correct row) (if only 'matrix' penalise once only)

(ii)	name of stage - electron transfer/transport chain/oxidative phosphorylation + location-inner membrane/cristae of mitochondrion (not: ETC)	1
(iii)	NADH2-3 FADH2-2	1
(d)	NAD, ethanol + carbon dioxide in correct places (not: alcohol)	1
		Total 10 marks

ı	Question		Marking details	Marks Available
	(a)	(i)	Cytoplasm;	1
		(ii)	C;	4
			C;	
			A;	
			B;	
		(iii)	2;	1
		(iv)	Accept hydrogen / reduced by;	3
			NADH ₂ / reduced NAD / NADH H+;	
			Lactate/ lactic acid;	
	(b)	(i)	Fats to fatty acids and glycerol;	3
			Glycerol into glycolysis;	
			Fatty acids to 2C fragments;	
			Acetyl group into Krebs;	
			oxidative phosphorylation;	
			More hydrogen in a substrate more for oxidative	
			phosphorylation;	
			Ref.Chemiosmosis;	
		(ii)	CO ₂ / urea;	1
		(iii)	More O ₂ ;	2
			More CO ₂ ;	
			For blood to supply and remove;	
			Anaerobic;	
			Question 2 total	[15]

	4!	Marking details	Marks Available					
2. Question			A01	AO2	AO3	Total	Maths	Prac
(a)	(i)	Any 2 from: From glycolysis (1) NOT link reaction/ Krebs Oxidation/ dehydrogenation reaction/ action of dehydrogenase (1) conversion of triose phosphate to pyruvate (1)	2			2		
	(ii)	Reduced FAD {passes its electrons to the second proton pump / only uses two proton pumps}(1) Only 2 ATP are produced (per reduced FAD) (1)		2		2		
	(iii)	{More respiration/ more ATP} required for muscle contraction (1) the cells use the mechanism which yields {more ATP/ 3 ATP per reduced NAD} (1)		2		2		
(b)		Removal of {amino/ amine/ NH ₂ } group/ deamination/ formation of {keto acids/ammonia} (1) Combining of amino group with carbon dioxide/formation of urea (amino/ amine/ NH ₂ group)(1) In the liver (1)	3			3		
		Question 8 total	5	4	0	9	0	0