[10]

1.	(a)	(i)	award both marks for correct answer 10 000 / 800 000 (× 100); 1.25 / 1.3 / 1(%);	2
		(ii)	R any reference to energy / light missing the plant reflected (off plant) / only certain wavelengths of light can be, absorbed used; ora absorbed by / hits, non-photosynthetic parts; e.g. bark passes through leaf / misses chlorophyll / misses chloroplasts; some is heat that is used in evaporation / respiration;	ed / max 2
		(iii)	bacteria / named bacterium decomposer; (Nitrobacter, Nitrosomonas)	1
		(iv)	take the first 2 answers: death / dead remains; excretion; R waste products egestion; other suitable method; e.g. insects moulting hatched eggs moulting (fur / feathers) R leaves	2
	(b)	produ diffic energ	hary consumers are eating and ucers have, cell walls / cellulose; ora cult to digest / much material, wasted / egested; gy used by gut microorganisms; ora h material cannot be eaten (by primary consumer); ora	3
2.	(a)	ref to serie	s with previously uncolonised area / bare ground / bare rock / AW; o pioneer species / named pioneer; s of recognisable, seres / stages; resses to, climax / final equilibrium stage;	max 2
	(b)	soil c chan hold relea	lise environment; development / increase humus / organic material; ge soil pH; more water; use more minerals or nutrients / increase N content or fix N / hold ions; microhabitat / reduce exposure / provide shelter / reduce erosion;	max 3

	(c)	any	two from following:		
		expo	-	2	
	(d)	plan	eases; ts at later stages are large / plants in early stages are small; s / shrubs. are woody, appear later in succession;	2	[9]
3.	habi com	ilation tat; munity ystem;	у;		
	(first) trophic; R <i>tropic</i> producers/(photo) autotrophs/autotrophic; (primary) consumers/heterotrophs/heterotrophic/herbivore;				
	R ca	ırnivoi	re/other qualified consumer	7	[7]
4.	(a)	(clin	nically) obese/obesity; R morbidly obese	1	
	(b)		B ntial fatty acids/linoleic acid/linolenic acid/fat soluble mins/A/D /E/K;		
		<i>Diet</i> suga	<i>C</i> urs/named sugar/starch; A vitamin C	2	
	(c)	(i)	B; energy intake (of B) is lower ORA;	2	
		(ii)	energy intake is less than energy used ORA;	1	

[9]

(d) (no fruit may mean) scurvy/described; **R** vitamin C deficiency unless qualified

raised, cholesterol/LDL, levels in blood; **R** *intake* fatty substances deposited <u>in</u> artery walls/atherosclerosis; <u>coronary</u> arteries; narrows lumen; reduces, blood/oxygen, delivered to <u>heart muscle</u>; CHD/heart attack/angina; thrombosis/clot; raised blood pressure/hypertension; stroke;

stress on liver; stress on kidney; due to excess protein/amino acids/urea;

AVP;

- AVP; e.g. deposition of subcutaneous fat/AW obesity stress on joints anorexia/bulimia/obsession on diet constipation bowel cancer hypoglycaemia giddiness lethargy/fatigue/tiredness [but **R** 'lack of energy'] 3 max
- 5. release of carbon dioxide; from fungal respiration; available for photosynthesis/carbon fixation; extracellular digestion; named enzyme(s); release of, inorganic substance/minerals/named mineral; **R** *nutrients, nitrogen* **A** <u>nitrogenous compound</u> uptake through, <u>roots/root hairs;</u> named use of mineral in plants; ref. to humus; ref. to beneficial role of humus in soil; e.g. increase water retention, improve soil structure, stabilize soil

ref to, leaching/runoff, into waterways; 6. causing algal blooms; blocking of light for aquatic plants; ref to, decomposition/high numbers of decomposers; leading to high BOD; reference to 'blue-baby' syndrome; links to haemoglobin; max 4 [4] 7. ref to setting grid/area to be sampled; 1 2 suitable systematic method chosen/ref to belt/line transect; ref to repetition of line transects; 3 use of quadrats; 4 use of appropriate sized quadrat; 5 6 details of regular quadrat placing; 7 identify species/use of keys; 8 presence or absence in quadrat; 9 calculation of % of species frequency; 10 measure % cover/use of appropriate scale; e.g. (Braun-blanquet/ACFOR/ DAFOR/DOMIN) 11 ref to analysis of data/use of kite diagram; 12 AVP; ref to relevant statistical analysis, e.g. Spearmans Rank Correlation max 7 QWC - clear well-organised answer using specialist terms 1 [8] 8. plants/protoctists; (a) animals/fungi/protoctists; 2 A protoctists once only **R** taxa that are not kingdoms (b) energy movement/locomotion/muscle contraction/cilia/flagella; active transport; A example anabolic reactions/AW; A e.g. protein synthesis/DNA replication (movement of chromosomes in) mitosis/meiosis; nerve impulse/electrochemical gradients; maintain body temperature/generate heat; AVP; (eg bioluminescence/electrical discharge) AVP; (detail of any point) 3 max

[16]

	e.g. o A na grow repai	iochemicals/macromolecules; A <i>in organic matter</i> carbohydrate/protein/lipid/nucleotide/nucleic acid; <i>umed examples</i> vth; ir;	max	max 4
(c)	bacte plant for, a	ifying bacteria) help/increase, plant growth; eria make nitrate (available); ts need nitrate; amino acids/protein/chlorophyll/DNA; new cells/mitosis/new leaves;		max 2
(d)	(i)	chemoheterotrophic;		1
	(ii)	photoautotrophic;		1
(e)	(i)	carbon; R CO_2		1
	(ii)	<i>Desulfovibrio</i> , uses sulphur (S)/makes hydrogen sulphide (H_2S green sulphur bacteria, use H_2S /make S; colourless sulphur bacteria use H_2S ;);	max 2
(f)	color	urless sulphur bacteria;		1
(g)	(bact (tissu	<i>erfringens</i> similar to <i>C. difficile</i> /AW; teria) anaerobic; ue damage/poor blood supply) decreases oxygen available; litions suitable for <i>Clostridium</i> to multiply; o;		max 2

9.	(a)	(i)	denitrification;	1
		(ii)	Rhizobium;	1
		(iii)	active transport / diffusion;	1
		(iv)	nitrification;	1

(b) max 3 for each method

ploughing-in

- 1 legumes / named e.g., possess, (root) nodules / nitrogen fixing bacteria;
- 2 *Rhizobium*, performs nitrogen fixation / described;
- 3 nitrogenous compounds are present in, roots / nodules / legumes / plants;
- 4 made available to soil if, ploughed in / not removed;
- **5** roots / AW, decomposed / acted on by decomposers / rot / decay;
- 6 nitrogenous compounds released (by decomposers);
- 7 formation of nitrate; *3 max*

crop rotation

- 8 different, crops / plants, have different (nutrient / nitrate) requirements;
- 9 each year, different demands made on the soil / nutrients not being removed at the same rate;
- 10 in, 4th / fallow, year, no (little) nutrients removed / used for grazing animals;
- 11 nutrient levels allowed to build up;
- 12 use legume in rotation;
- 13 tuber / root, crop to improve soil structure; 3 max

[8]

10.	idea of soil development; A ref to depth or fertility of soil		
	(increase), organic material / humus;		
	(increase) in availability of water;		
	minerals available; A nutrients		
	(some pioneer species) carry out nitrogen fixation;		
	photosynthesis (fixing carbon);		
	create habitats / provide shelter;		
	AVP; e.g. increase weathering, stabilise sand / soil	2 max	
			[2]

(i)	final stage in succession / AW; (community) in equilibrium with environment;	1 max	
(ii)	eat / trample, seedlings (of shrubs / trees) / AW; R eat grass prevents, succession / establishment of next sere;	1 max	[2]
(a)	award two marks if correct answer (18.4) is given incorrect answer (or no answer) but correct working = 1 mark 44 / 239 (× 100) 18.4%;; ecf applied for minor addition errors +/- 2	2	
(b)	 lay, tape / string, <u>across</u> path; R along the path include trampled and non trampled areas in same transect; use of quadrat; ref to how quadrat is placed; R random count number of plants / percentage cover of plants; plot a graph; repeat the transect; carry out statistical test (Mann-Whitney / Spearman's rank); AVP; e.g. detail of sampling technique 	5 max	[7]
plot size; soil type; soil pH; plant cover; aspect / locality; ref to temperature linked to aspect; slope; ref to rainfall or irrigation; time period; AVP; e.g. tillage, method of cultivation, degree of compaction AVP; e.g. previous use of land		max 3	[3]
	 (ii) (ii) (a) (b) (b) (c) (c)<td> (community) in equilibrium with environment; (ii) eat / trample, seedlings (of shrubs / trees) / AW; R eat grass prevents, succession / establishment of next sere; (a) award two marks if correct answer (18.4) is given incorrect answer (or no answer) but correct working = 1 mark 44 / 239 (× 100) 18.4%;; ecf applied for minor addition errors +/- 2 (b) 1 lay, tape / string, across path; R along the path 2 include trampled and non trampled areas in same transect; 3 use of quadrat; 4 ref to how quadrat is placed; R random 5 count number of plants / percentage cover of plants; 6 plot a graph; 7 repeat the transect; 8 carry out statistical test (Mann-Whitney / Spearman's rank); 9 AVP; e.g. detail of sampling technique plot size; soil type; soil pH; plant cover; aspect / locality; ref to temperature linked to aspect; slope; ref to rainfall or irrigation; time period; AVP; e.g. tillage, method of cultivation, degree of compaction </td><td> (community) in equilibrium with environment; 1 max (ii) eat / trample, seedlings (of shrubs / trees) / AW; R eat grass prevents, succession / establishment of next sere; 1 max (a) award two marks if correct answer (18.4) is given incorrect answer (or no answer) but correct working = 1 mark 44 / 239 (× 100) 18.4%; ecf applied for minor addition errors +/- 2 (b) 1 lay, tape / string, across path; R along the path 2 include trampled and non trampled areas in same transect; 3 use of quadrat; 4 ref to how quadrat is placed; R random 5 count number of plants / percentage cover of plants; 6 plot a graph; 7 repeat the transect; 8 carry out statistical test (Mann-Whitney / Spearman's rank); 9 AVP; e.g. detail of sampling technique 5 max plot size; soil type; soil pype; soil pype; ref to temperature linked to aspect; slope; ref to rainfall or irrigation; time period; AVP; e.g. tillage, method of cultivation, degree of compaction </td>	 (community) in equilibrium with environment; (ii) eat / trample, seedlings (of shrubs / trees) / AW; R eat grass prevents, succession / establishment of next sere; (a) award two marks if correct answer (18.4) is given incorrect answer (or no answer) but correct working = 1 mark 44 / 239 (× 100) 18.4%;; ecf applied for minor addition errors +/- 2 (b) 1 lay, tape / string, across path; R along the path 2 include trampled and non trampled areas in same transect; 3 use of quadrat; 4 ref to how quadrat is placed; R random 5 count number of plants / percentage cover of plants; 6 plot a graph; 7 repeat the transect; 8 carry out statistical test (Mann-Whitney / Spearman's rank); 9 AVP; e.g. detail of sampling technique plot size; soil type; soil pH; plant cover; aspect / locality; ref to temperature linked to aspect; slope; ref to rainfall or irrigation; time period; AVP; e.g. tillage, method of cultivation, degree of compaction 	 (community) in equilibrium with environment; 1 max (ii) eat / trample, seedlings (of shrubs / trees) / AW; R eat grass prevents, succession / establishment of next sere; 1 max (a) award two marks if correct answer (18.4) is given incorrect answer (or no answer) but correct working = 1 mark 44 / 239 (× 100) 18.4%; ecf applied for minor addition errors +/- 2 (b) 1 lay, tape / string, across path; R along the path 2 include trampled and non trampled areas in same transect; 3 use of quadrat; 4 ref to how quadrat is placed; R random 5 count number of plants / percentage cover of plants; 6 plot a graph; 7 repeat the transect; 8 carry out statistical test (Mann-Whitney / Spearman's rank); 9 AVP; e.g. detail of sampling technique 5 max plot size; soil type; soil pype; soil pype; ref to temperature linked to aspect; slope; ref to rainfall or irrigation; time period; AVP; e.g. tillage, method of cultivation, degree of compaction

14. 1 eutrophication;

(b)

- increased growth of, algae / seaweeds; 2
- 3 block, light / space;
- ref to competition; 4
- 5 (so) alters food chain / example;
- decomposition of, sewage / dead organisms; 6
- ref to aerobic bacteria / increased BOD / less oxygen in water; 7
- 8 fish / sea slugs / sponges / corals, die; (linked to oxygen loss)
- 9 AVP; e.g. increased mineral nutrients increases susceptibility of corals to disease,
 - increased numbers of anaerobic species, ref to heavy metal toxicity 4 max

[4]

15. (a) do not credit if any incorrect answer included

(i)	fox;	1	
(ii)	grass / clover / legume;	1	
(i)	nitrogen fixation / Haber (process); A reduction	1	
(ii)	lightning; A oxidation / combines with oxygen A 'lightening'		
	R thunderstorm / lighting	1	
(iii)	denitrifying; A correct e.g. (Pseudomonas) R Nitrobacter / Nitrosomonas / Rhizobium	1	
(iv)	fixes nitrogen / provides fixed nitrogen <i>or</i> NH ₄ ⁽⁺⁾ ; R ammonia ref to, clover / legume / named legume, making, amino acids / polypeptides / protein; (plant has) no need to rely on (fixed) nitrogen compounds in soil; R <i>ref to fertilisers</i>		
	free-living species provide, ammonium (ions) / fixed nitrogen, for nitrifying bacteria / nitrification;	2 max	[7]

higher, number / proportion / percentage / ratio / fraction, of mounds A figs, e.g. ²/₃ vs ¹/₂, 2:1 vs 1:1, 36 vs 24 1 look for a statement and a reason use smaller quadrat ; e.g. $50 \text{ cm} \times 50 \text{ cm}$ use grid and random numbers ; throwing keys biased ; AW estimate, percentage cover / abundance ; A point (frame) quadrat may be single plants in some samples and many in others ;

bigger study area / more data ; (keep equal numbers mounds and quadrats) improves reliability / AW;

record other plants ; could influence thyme ;

16.

(i)

(ii)

have thyme ; (c.f. quadrats) ora

for fair test; AW

measure / note, abiotic variables ; A example explanation of how named variable affects thyme ;

AVP;	
AVP;	4 max
	[5]

17.	(a)	(i)	(place) where, organism / animal / plant / population / community, lives; R <i>things / named organism</i>	1	
		(ii)	<u>role</u> of organism in, the ecosystem / AW; A habitat / environment / community / area / place R population	1	
		(iii)	living / biotic, and, non-living / abiotic, components that interact;	1	
	(b)		<pre>alation = one <u>species</u> community = more than one / all, species / population;</pre>	1	[4]

18.	(i)	1	some food not, eaten / accessible; A an example	
		2	some, food / energy, not digested / egested / lost as faeces;	
		3	(some assimilated) food / energy, lost in excretion;	
		4	ref to decomposers;	
		5	(some assimilated) food / energy, lost in respiration;	
		6	energy lost, as heat / in movement / in metabolism;	
		7	small proportion energy used for, growth / material, and is available to next trophic level;	3 max

(ii) 1 plant material difficult to digest / animal material can be digested

easily;

- 2 ref to, cellulose / lignin / wood;
- 3 no cellulase;
- 4 (animal) gives similar spectrum of amino acids (as consumer);
- 5 less of the producer available to the 1° consumer than 1° consumer available to the 2° consumer;
- 6 AVP; e.g. ref to gut bacteria

ignore references to numbers of organisms eaten or size of organisms 2 max

[5]

19.	(i)	<pre>natural change in species composition (in an area); ref to directional change; ref to named examples in the diagram (either species or category); over a period of time; a number of recognisable stages / seres / seral stages; one sere changes the conditions for the next; e.g. depth of soil increases / soil stabilisation; leads to a climax community; creation of niches; ref to nitrogen fixation; AVP; e.g. pioneer species</pre>	4 max
	(ii)	<pre>development of deeper soil ; soil, becomes rich in humus / has more nutrients / is more fertile ; dominant species change ; plant species get larger / shrubs to trees / increase in biomass / larger root systems ;</pre>	2 max
	(iii)	<pre>biotic = animal species / number of soil organisms / decomposers /</pre>	

 water retention ;
 AVP ; e.g. temperature
 2 max

 [8]

20.

0. U; V;

Z;

S;

[4]

4

21. (a) *advantages (max 2)*

can be used with any species (irrespective of size);

[17]

		not require to distinguish one individual from another; to assess; R simple					
	disadvantages						
		ective / AW; nant species may be over-estimated;	max 3				
(b)	(i)	line established, from shore to dune slack / from to; <u>quadrat</u> used; suitable size / actual size stated (minimum 0.25m ²); R if no units given placed continuously / at specified intervals along line; key to identify species; abundance recorded in each quadrat; bare ground recorded;	max 4				
	(ii)	 ACFOR scale converted to numerical scale; reading at each site recorded (on graph paper); width of diagram related to ACFOR (maybe shown on diagram); points from each site joined together; repeated for each species found present; 	max 3				
(c)	probe pushe	f, thermometer / probe; e must be calibrated; ed into, sand / soil, to same depth each time; itions at each sampling point;	max 2				
(d)	(i)	a stage during the process of succession;	1				
	(ii)	sea couch / marram grass, grow in bare sand;					
		dune builds up / stabilised by grasses; OR colonisers established on bare, rock / soil; example; (if not sand dunes)					
		ref to pioneer species; organic matter builds up / humus content increases; forming soil / depth of soil increases; other species take over from grasses; A named example from Fig. 1 roots stabilise soil structure; diversity of species increases; climax eventually reached; AVP;					
		AVP; e.g. reference to deflected succession, growth of shrubs	max 4				

- 1 2 3 4 22.
- sun is the energy source (for the system);
 producers / (green) plants, trap / use / absorb (sun's energy);
 photosynthesis;
 not all energy trapped and reason;

	5 6 7 8	 energy used for, plant metabolism / plant processes / e.g.; A respirat so this energy not, passed on / available, to consumer; (some energy) used for, growth / storage; so this energy is, passed on / available, to consumer; 	ion		
	9 10	1° consumer / herbivore, eats, producer / plant; some producer, not edible / not accessible / e.g.;			
	11	some, not digested / egested / lost as faeces;			
	12 13	2° consumer / carnivore / omnivore, eats, 1° consumer / herbivore; some parts of animal not edible / e.g.;			
	14 15	energy used by animal in moving (to feed); energy, used / lost, in, digestion / excretion / sweating / e.g.; A respiration			
	16	transfer / loss, to, decomposers / bacteria / fungi / saprotrophs;			
	17 18 19 20 21	energy lost as <u>heat</u> from respiration; net productivity = gross productivity – respiration; some ref to estimate of efficiency of transfer (a general statement); quote of (comparative) figures from diagram; manipulation of figures to illustrate a point; NOT 6612 and 14198			
	22 23	AVP; AVP; e.g. loss out of ecosystem another manipulation of figures available energy limiting length of chain		max 9	
	QW	${\rm C}$ – legible text with accurate spelling, punctuation and grammar;		1	[10]
23.	(i)	anaerobic conditions encourage denitrifying bacteria; convert nitrate ions to (gaseous) nitrogen; reduces available nitrogen;			
		sundew does not rely on, soil nitrate / soil nitrogen; ref to, hydrolysis / digestion / use of enzymes, on insect proteins; releasing amino acids; ref to deamination;	max 3	max 4	
	(ii)	Reduces amount of air in soil; roots starved of oxygen; respiration becomes anaerobic; insufficient energy released; not able to absorb (enough), ions / named ion;			
		via active transport;		max 3	[7]

24. (a) set out a grid in each area *or* site / description of how the grid is established; use random numbers; how generated; e.g. random number tables / use of calculator to give co-ordinates; at that point / co-ordinate, measure nearest plant;

max 4

repeat (14 times);

(b)	(i)	total heights; divided by the number of plants (in the sample); provides an average height for the sample;	max 2
	(ii)	 measure of, variability / spread of heights (in sample); R range sum of differences from the mean; 68% of values lie within mean ± 1 S.D.; 95% of values lie within mean ± 2 S.D.; 	max 2
(c)		er spread from mean in site B / <i>ora</i> ; R range nt of plants in site B is more variable / <i>ora</i> ;	max 1
(d)	(i)	that there is no <u>significant difference;</u> between the mean height in site A and the mean height in site B ; A results any difference is entirely due to chance;	max 2
	(ii)	there is a <u>significant difference</u> between the means at the two sites; the <u>difference</u> is due to something other than chance; reject the null hypothesis; with 28 degrees of freedom; at the 5% confidence level; A $p<0.05 / <0.01 / <0.001$ the critical t value is, $2.05 / 2.76 / 3.67$; calculated value, exceeds / is much higher than, this;	
		assuming the sample shows a normal distribution;	max 4

25. accept reverse arguments if responses are referring to cereal plants both have root nodules; with <u>Rhizobium</u> bacteria; which are nitrogen-fixing; convert nitrogen (gas), to nitrate ions / ammonium compounds; A NO₃⁻ / NH₄⁺ R ammonia / NH₃

plants convert these to amino acids; which are used to make protein; high levels of proteins stored in seeds; max 4

[4]

[15]

accept any three correct statements based on the data;;; for example populations of, mites / springtails, much greater / more than twice the number, in the climax forest than before trees established ora number of species of springtail greatest in the climax community ora small difference in numbers / no significant difference, between areas with young trees and areas with mature trees there were always (many) more mites than springtails in the sample [3] 27. mark (i) and (ii) to max 3 each – the question to max 4 nitrifying bacteria (i) convert, ammonium / NH_4^+ , to, nitrate III / nitrite / NO_2^- ; **A** ammonia $/ NH_3$ nitrite, converted to, nitrate $(V) / NO_3$; A one mark for single step 'ammonium to nitrate (V)' requires, aerobic conditions / oxygen / aerated soil; (nitrate (V) ions) can be, taken up / used, by plants; (ii) denitrifying bacteria remove nitrate (V) (ions) / convert nitrate (V) (ions) to nitrogen (gas); in, anaerobic conditions / oxygen poor soil / non-aerated soil; recycles nitrogen / further use of nitrogen (by fixing); prevents nitrogen being trapped / AW; 4 max [4] 28. look for prokaryote feature (i) no nucleus / no nuclear membrane / no nucleolus / DNA free (in cytoplasm); **R** DNA moving naked DNA / DNA not associated with proteins / no chromosomes; circular / loop, DNA; no, membrane-bound organelles / e.g.; smaller / 18nm / 70S, ribosomes; no ER; cell wall, not cellulose / polysaccharide and, amino acids / murein; AVP; e.g. mesosomes / plasmids 1 max (ii) glycosidic (link) and peptide (bonds) (in correct context); condensation; ref. OH groups; ref. NH₂ and OH group; water, removed / produced / by-product; enzyme; AVP; e.g. energy required 3 max

26.

2 max

(iv) treat enzyme as neutral

nitrogenase; leghaemoglobin; haemoglobin;

29.

(v) (nitrogen)) fixation; A reduction	1	
· / • •	type of inhibition (competitive / non-competitive / reversible / irreversible); basic mode of action (e.g. binds to active site); detail:		
	consequence (e.g. prevents, substrate / nitrogen, from binding);	2 max	[10]
primary consum	ner / herbivore; ignore e.g.s R vegetarian	1	[1]