1.	(a)	(i)	<i>gene</i> length of DNA; codes for a (specific), polypeptide / protein / RNA;	max	1
			<i>allele</i> alternative form of a gene; found at a, locus / particular position on, a chromosome;	max	1
		(ii)	assume allele refers to coat colour allele (coat colour) gene / alleles, only on X chromosome; A no (coat colour), gene / allele, on Y chromosome male cats, XY / only have one X chromosome;		
			males have only one (coat colour) allele / cannot have two (coat colour alleles;need black and orange alleles for tortoiseshell colour;	:)	2
	(b)	parer game	tal genotypes $C^{r}C^{r} \times C^{w}C^{w}$; etes C^{r}, C^{w} ;		
		$F_1 g \epsilon$	enotypes <u>and</u> phenotypes 1 mark:		
		F ₁ ge F ₁ ph	enotypes (all) C ^r C ^w nenotypes (all) pink;		
		$F_2 g \epsilon$	enotypes <u>and</u> phenotypes 1 mark:		
		game F ₂ ge F ₂ ph	etes C ^r , C ^w C ^r , C ^w ; enotypes C ^r C ^r C ^r C ^w C ^r C ^w C ^w C ^w enotypes red pink (pink) white;		
		F ₂ ra accep accep	tio 1:2:1; pt other symbols if key given. pt r and w as symbols without key.		6
	(c)	(i)	65; 130; 65;		3
		(ii)	 0.138 + 0.007 + 0.061; (or other suitable working) 0.206 - 0.208; 2 marks for correct value if no working shown ecf for both marks but calculated value must be to three decimal places 		2
		(iii)	support, figure lower than 5.991 / figure lower than critical value;		
			R 'support' on its own.		
			ecf applies if value in (ii) is incorrect		1 [16]

2.	name name	ed characteristic; ed environmental factor; (mark first answer only)	2	[2]
3.	(a)	(i) <u>sympatric;</u>	1	
		(ii) ranges of two species, overlap/close together/AW;		
		no geographical barrier; ref to behavioural/genetic/physiological/prezygotic barrier; correct ref to named area of map;	max 2	
	(b)	ref to mate selection by size; ie large with large or small with small ref to monogamy; ref to intermediate sizes, at disadvantage/selected against/ora;		
		intermediate do not pass on <u>alleles</u> /ora;	2	
		suggested reason why intermediate at disadvantage/ora	max 3	
	(c)	female produces a lot of eggs; selects male, that can store lots of eggs/has a large pouch/ora; large males fertilise many eggs/ora; chance of more offspring surviving;		
		or		
		large female and small male produce intermediates/ora; intermediates at disadvantage/ora;	max 2	[8]
4.	(i)	crossing over; treat chiasma(ta) as neutral	1	
	(ii)	prophase;	1	
	(iii)	have different, alleles/base sequence of DNA; A sister chromatids have same alleles/non sister have different alleles	1	[3]
5.	two four	different genes represented in each gamete ie Q or q <u>and</u> R or r; correct combinations ie Q and R, Q and r, q and R, q and r;	2	
				[2]

AaBb 6. (i) (parental genotypes:) aabb; \times (gametes:) AB, Ab, aB, ab (all) ab; (offspring genotypes:) AaBb, Aabb, aaBb, aabb; (offspring phenotypes:) grey body/normal wing, grey body/bent wing, black body/normal wing, black body/bent wing; [sequence of phenotypes must match genotypes for mark] (phenotypic ratio:) 1:1:1:1: apply ecf. accept alternative symbols if a key is given, but if no key given max 4 5 80,80,80,80; 1 (ii) (iii) (working) 0.1125 + 0.3125 + 0.05 + 0.45; = 0.925; A 0.9/0.92/0.93 2 marks for correct answer with no working. 2 ecf if correctly use wrong figures from (ii) (iv) yes (but no mark for yes on own) as calculated figure is smaller than 7.82; ecf applies to value calculated in part (iii) 1 [9] 7. deficiency gives resistance to malaria; deficient/resistant, individuals more likely to survive; alleles, passed to next generation; natural selection; presence of *Plasmodium* is selection pressure; frequency of this allele increases; phenotype more common in population; AVP; e.g. others more likely to die of malaria 3 max [3] 8. (dominant) epistasis; (a) 1 ref. frame shift; (b) ref. three extra, triplets/amino acids; may introduce stop code so shorter, polypeptide/protein; may increase length of, polypeptide/protein; may alter, shape/3' structure, of, polypeptide/protein; affects active site; protein/polypeptide, may lose function; max 4 protein/polypeptide, may have different function;

Parental phenotypes: White Leghorn x Red Junglefowl (c) (i) Parental genotypes: IICC x iiCC IIcc x iiCC; or F₁ genotype: IiCC liCc; 2 or(ii) 3 white : 1 pigmented 13 white : 3 pigmented; 1 or [8] 9. gene bank; source of alleles; for future (selective) breeding; to counteract, genetic erosion/loss of genetic variation; to counteract, inbreeding/homozygosity; to counteract extinction; for changed conditions; example of changed conditions; e.g. climate/environment/disease/fashion to preserve as yet unidentified, alleles/traits; max 4 [4] 10. pigmented birds more likely to be damaged; at all percentages; more damage as percentage of pigmented birds increases to 23%; more damage as percentage of white birds increases to 24%; fall in damage of white birds at, 25%/highest percentage; max 3 [3] 11. (i) for benefit of humans; to improve, trait(s)/named trait; to produce desirable, phenotype/genotype; to increase number of desirable alleles; to increase homozygosity; AVP; max 2 ref. self-pollination; (ii) ref. inbreeding; limited gene pool; max 2

(iii)	ref. different numbers of chromosomes;		
	hybrid is 3n;		
	sterile;		
	gametes have 22 and 11 chromosomes/hybrid has 33 chromosomes;		
	some chromosomes unpaired;		
	failure of meiosis;		
	ref. uneven distribution of chromosomes;		
	ref. other barrier to interspecific cross;	max 2	
	•		[6]

12. stated advantage;

detail; e.g.	particular character (not whole phenotype)/can alter one trait only (without affecting background genes)/can add allele from different taxon with which breeding may not be possible/auicker		
	(than the many generations of, selective breeding/backcrossing)	2	
stated disad	vantage;		
detail; e.g.	cannot precisely position insert (so) unknown/unanticipated effect/may pass to other species (with unknown/undesirable, effect)/regarded as ethically undesirable (no market/crop destroyed by protesters)/cannot breed from GM (requires cloning)	2	
		2	[4]

13. (i)

(i)	★ ; ★; ✓ (tick); ★;	4	
(ii)	discontinuous; [do not allow if no reason given]	1	
	one, gene/locus; A <i>major/Mendelian</i> , <i>gene</i> discrete phenotypes/ora; qualitative/large effect/little environmental effect;	max 1	[6]

1

14. (i) asexual; **A** binary fission / cloning **ignore** mitosis

	(ii)	1	restore diploid number when gametes fuse / AW;		
		2	prevents doubling of chromosome number (in each successive generation);		
		3	without use of gametes there is less variation;		
		4	no input of genetic material from more than one individual;		
		5	triploid / 5n / etc, would be infertile;		
		6	AVP; e.g. polyploid would result in loss of variation	2 max	
					[3]
15.	chii	nchilla	$-C^{Ch}C^{Ch} C^{Ch}C^{H} C^{Ch}C^{a};$		
	ago	outi – C	$^{A}C^{A} C^{A}C^{Ch} C^{A}C^{H} C^{A}C^{a};$	2	
	_				[2]
16.		max 3	from points 1 to 5		
	$\frac{1}{2}$	limite	d, food supply / space; etition:		
	3	predat	tion;		
	4	diseas	e;		
	5	marki	a_{1}^{2} carrying capacity / death rate = onth rate,		
	C	marki	ng points 1 – 5 linked to keeping population stable		
	6 7	variat	ion due to, combination of alleles / mutations;		
	8	best a	dapted survive / ora; A survival of fittest idea		
	9 10	reproc	luce; lleles to offspring:		
	11	freque	ency of favourable alleles will, increase / be maintained; \mathbf{A} ora	5 max	
					[5]
17		1:			
1/.	(a)	(two	o or more) genes / loci, on same chromosome; R alleles		
		do n	ot assort independently (in meiosis) / inherited together;		
		cros	sing over		
		recip betw	procal exchange of portions of, chromatids / DNA; A swapping alleles /een (paternal and maternal) homologous chromosomes: A bivalent		

in prophase I (of meiosis); max 2 max 3

[15]

(b)	anthe male poller plants flowe	rs removed (before maturity) (to produce male sterility); sterilisation; <i>genetic or, PGS / hormone</i> a transferred by hand; s isolated; rs bagged (before and after pollination); max 3
(c)	(i)	R 'chance' alone
		chance fertilisation; chance re picking 50 offspring; chance re other traits affecting survival; AVP; e.g. position effect, different gene interactions affecting expression, effect of crossing over on numbers of other classes max 1
	(ii)	award two marks if correct answer (16%) is given without working
		recognition of recombinant classes;
		$\frac{32}{200} \times 100;$
		=16%; max 2
	(iii)	1,2 $\frac{A}{a}$ $\frac{B}{b}$ \times $\frac{a}{a}$ $\frac{b}{b}$;; A (AB)(ab) \times (ab)(ab)
		both chromatids per chromosome shown;crossover shown;
		5 result of crossover shown;
		6 most / 84%, gametes <u>A</u> B and <u>a</u> b [\times <u>a</u> b]; A AB and ab 7 = parental;
		8 few / 16%, gametes <u>A</u> b and <u>a</u> B [\times <u>a</u> b]; A Ab and aB 9 = recombinant;
		10ref 16 map units apart / close together;max 6
(i)	produ	ction of desired changes in phenotype of an organism;

18. (i selection of appropriate <u>alleles</u> / AW; by <u>artificial selection</u>; use as parents / mate, those showing desired phenotype (to larger degree); max 2 (ii) measure of value of individual's genotype (for breeding); mate with number of proven individuals; assess phenotypes of offspring; **R** genotypes average value; especially useful for sex-limited traits; **R** sex-linked e.g. sex-limited trait;

19. *description*

- D1 chosen male and female mated;
- D2 ref to desired characteristic / named desired characteristic;
- D3 ref to AI;
- D4 advantage of using AI;
- D5 offspring inspected and best mated;
- D6 several / many, generations;
- D7 ref to problem inbreeding;
- D8 ref to way of minimising inbreeding;
- D9 ref to heritability;
- D10 easier to select for traits with high heritability / ora;
- D11 easier to select for discontinuous variation / ora continuous variation;
- D12 ref to polygenes / additive effect; max 6 'describe' D marks

explanation

- E13 selective breeding involves whole genomes;
- E14 hence other traits follow selected trait(s);
- E15 ref to linkage;
- E16 artificial selection;
- E17 selection, different from natural selection / for benefit of humans;
- E18 starter population, small / not representative; A founder principle max 4 'explain' E marks AVP either D or E mark; e.g. ref to use of, IVF / surrogate, with reason ref to loss of alleles / genetic erosion max 8

QWC - legible text with accurate spelling, punctuation and grammar;

[9]

[4]

1

20. genetically isolated populations; allopatric speciation / AW; ref to genetic drift; ref to, founder effect / founder population; loss of alleles / genetic erosion / reduced gene pool / loss of genetic diversity / AW; ref to, disease / population crash; AVP; e.g. ref to exposure to different selection pressures max 4

max 4

21.	(i)	<u>semi-conservative</u> replication; DNA, polymerase / helicase; breaks hydrogen bonds between two DNA strands / unzips DNA; each DNA strand acts as a template / both strands copied; complementary base-pairing (with free DNA nucleotides); sugar-phosphate backbone forms;	2 max	
	(ii)	crossing-over; in prophase; recombination of, non-sister / maternal and paternal, DNA; AVP; e.g. matching cuts in DNA DNA ligase	2 max	
	(iii)	synapsis / to hold, (homologous) chromosomes / bivalent, together; (so close enough) for crossing-over; so can be evenly segregated; AVP; e.g. to package or support chromosomes, avoid DNA breaking, easier to move DNA	2 max	[6]
22.	(i)	A, B and E ;	1	
	(ii) (iii)	<pre>apply ora throughout produced by, sexual reproduction / fusion of gametes / fertilisation ; ref to random mating ; random fertilisation = 2 marks contain chromosomes from two individuals / diploid organisms ; more <u>alleles</u>; C and D are haploid organisms ; haploid cells have, one set of chromosomes / half the number of chromosomes :</pre>	2 max	
		meiosis requires pairing of homologous chromosomes ; ref to maintaining chromosome number when gametes fuse / gametes must be haploid ;	2 max	[5]

takin	g place in these stages to gain the mark.		
1	prophase 1;		
2	synapsis / homologous chromosomes pair up / bivalents form ;		
3	<u>crossing over</u> ;		
4	chiasma(ta) occur;		
5	DNA / alleles, exchanged ; A linked genes separated ;		
6	metaphase 1;		
7	independent / random, assortment ;		
8	bivalents line up on equator, independent of each other / randomly;		
9	metaphase 2 ;		
10	independent assortment of <u>chromatids</u> ;		
11	chromosome mutation;		
12	named example ; e.g. non-disjunction		
13	AVP ; e.g. ref to non-sister / non-identical, chromatids.	7 max	
	QWC – clear well organised using specialist terms ;		
	award the QWC mark if four of the following are used in correct context prophase, metaphase, homologous, bivalent, chiasma, crossing over, independent assortment	1	
		1	[8]

24. parent genotypes

baby blood group

l ^o lo X (lolo)	<u>O</u> ;	mark across each line in table
I ^A I ^B X I ^O I ^O	<u>B</u> ;	if no marks gained mark down columns
^A I ^O / I ^A I ^A X I ^O I ^O	<u>A</u> ;	max 2 marks if baby blood groups correct
I ^A I ^B X I ^A I ^O / I ^A I ^A		<u>AB</u> ;

[4]

25. (a) (i)

epistasis ; dominant ; correct ref to epistatic and hypostatic gene ; ref to protein / enzyme / inhibitor, product of allele A ; prevents, transcription / translation ; inhibits, expression / gene action ; blocks enzyme activity ;

(ii) small number of phenotypes ; distinct (phenotypic) classes ; qualitative ; two genes / AW ; large effect ; different genes have different effects ; not environmental ; AVP ;

3 max

3 max

(b)	(i)	emasculate /remove stamens from / male sterility gene in, seed parent bag flowers, before / after, pollination ; grow in isolation ; transfer pollen by hand ;	2 max	
	(ii)	increase genetic contribution of that species / <i>ora</i> ; keep (alleles of) background genes of that species; so that only A/a exchanged / AW; to see effect of A/a in other species;	2 max	
	(iii)	to produce, homozygous recessive / aa / AW ; so that, wanted allele / desired trait, expressed ;	1 max	
(c)	pollin bees swap selec but d selec and c ref co colou colou	nators can distinguish colour ; attracted to pink ; [A refs to 'blue' or UV <u>re</u> pink] ping alleles reduces visits by normal pollinator ; ping alleles attracts wrong pollinator ; tively bred / aa / red <i>M lewisii</i> , decreases bumblebee visits; oes not attract many hummingbirds ; tively bred / Aa / pink <i>M. cardinalis</i> , attracts bumblebees; lecreases hummingbird visits only slightly ; omparative figures ; ar important to bees ; ar not important to hummingbirds / some other feature important to hummingbirds ; ';	4 max	[15]
more at bo in bo much in Qu in qq use c	e transc th ages th skel A ' <i>i</i> n more Q genot genot f com	eription by QQ genotype ; s; letal and cardiac muscle ; <i>throughout' / 'in all cases' for 1 mark of these 2</i> in skeletal muscle / slightly more in cardiac muscle ; types expression falls with age in both skeletal and cardiac muscle ; ypes expression rises with age in skeletal but falls in cardiac muscle ; parative figures ;	4 max	[4]
(a)	pene ref to	tration of biofilm difficult ; diffusion of antibiotic ;		

27. (a) penetration of biofilm difficult ; ref to diffusion of antibiotic ; detail of diffusion ; larger SA of separate bacteria / *ora* ; does not reach all bacteria in film / *ora* ; antibiotic trapped by film ; detail of entrapment ; dead bacteria in film form barrier ; AVP ; e.g. horizontal transmission / conjugation, easier in biofilm AVP ;

(b)	both strains have identical sensitivity when in suspension ; to all three antibiotics ; both, less sensitive / more resistant, when in biofilms (<i>ora</i>) ; strain 1 much, less sensitive / more resistant ; comparative figures ; C most effective / AW ; B least effective / AW ;	4 max	
(c)	mutation ; random / chance / pre-existing ; detail of mutation ; e.g. base substitution, addition, deletion ref to, selection / selective advantage ; codes for different, glucan / biofilm ; affects all three antibiotics ; blocks antibiotic from reaching cells ; binds antibiotics ;	4 max	
(d)	horizontal transmission ; (copy of) plasmid ; via conjugation ; detail ; conjugation tube / 'R' plasmid / single strand DNA transferred via transformation ; transferred by (bacterio)phage ;	3 max	[15]
(a)	any two of the following (monomer) not glucose ; contains nitrogen ; contains, sulphur ; AVP ; R ref to branching	2 max	
(b)	amount of glycoprotein varies (in different cells); (cells carry out) endocytosis to different extents; cells have different life spans / example; no time for polysaccharide to accumulate in short lived cells; number / role, of lysosomes not same in all cell types; AVP;	1 max	
(c)	with Hunter's syndrome, lysosomes / vesicles, might be larger ; more numerous ; have different shape ; stain differently ; AVP ; e.g. granular cytoplasm	1 max	

(d)	(i)	unaffected parents can have an affected child ; <i>ora</i> e.g. 3, 4, 8 / 11, 12, 16, 17 ;	1 max	
	(ii)	only males affected ; <i>ora</i> mothers pass it on ; <i>ora</i> on the X chromosome ; carrier women asymptomatic / dominant normal allele masks trait ; 4 / 11 / 1, could be carriers ;	2 max	
(e)	there most AVP	are only 3 cases / too small a sample ; ly female line shown ; ; e.g. pedigree of, 3 / 12, not known progeny of, 13 / 14 / 15, not known	1 max	
(f)	drug lysos hard if dru dowr tissue AVP AVP	<pre>must act in all cells ; omes are within cells ; for drug to reach ; ig acts as enzyme, polysaccharide on cell membranes may be broken i; e mechanical support would break down ; ; ; ; e.g. no animal model</pre>	2 max	[10]
(i)	Q, S,	P, N, M, R ;	1	
(ii)	accep	ot correct names of stages		
(iii)	Q; M; Q/S S; R; DNA synth synth	A prophase 1 A anaphase 2 ; A prophase 1 / metaphase 1 A metaphase 1 A telophase 2 replication ; tesis of proteins / named protein ; A transcription / translation tesis of membrane ; tesis of, organelle(s) / named organelle ;	5	
	AVP	; e.g. centrioles <u>replicate</u> ;	2 max	701
				[8]

Individual 2 - $X^H Y$; 30. (i) Individual 5 - X^hY ; Individual 6 - $X^H Y$; Individual 9 - X^HX^h; max 2 if sex chromosomes not shown 4 half / 0.5 / 50% / 1 in 2 ; A 1:1, 50:50 R 1:2 1 (ii) (iii) carriers have, both / H and h / dominant and recessive, alleles ; A are heterozygous ${\bf R}$ two alleles females have two X chromosomes / ora ; 2 [7]

31.	(a)	form of <u>a</u> gene ;	
		position of, gene / allele on, chromosome / DNA;	2

(b)	1	Woodland	more, dark / unbanded, snails or fewer, light / banded, snails ;			
	2		better camouflaged / ora ;			
	3		against, leaf litter / uniform background ;			
	4		relevant woodland data quote on colour and banding ;			
	5	Grassland	more, yellow / banded, snails or fewer, dark / unbanded, snails ;			
	6		better camouflaged / ora ; (only award if missed point 2)			
	7		against, pale / yellow / green / variable, background ;			
	8		relevant grassland data quote on colour and banding ;			
	9 10 11 12 13 14 15 16 17 18 19	survivors posse reproduce ; pass <u>alleles on</u> ref to <u>stabilisin</u> ref to other nan not a very mob separate gene p little mutation thabitat stable ; ref to why unfa AVP ; e.g. calc QWC – clear of clear and well of	8 max 1	[11]		
(a)	estim herita when / ora high	ate of role of gen ability = V_G / V_P heritability high ; heritability will h	notype in phenotypic variation / AW ; ; n much of variation is, genetic / not environmental result in successful selective breeding / ora ;	2 max		
(b)	 single / major / Mendelian, gene ; large effect ; little environmental effect ; dominant allele T expressed in homo- and heterozygote ; not polygenic ; not additive ; discontinuous variation / not continuous variation ; qualitative / not quantitative ; 					

(c)	(i)	triplet of bases that does not code for an amino acid ; ATT / ATC / ACT ; code to mark end of gene ; code to stop transcription / ref to disengagement RNA polymerase ;	2 max
	(ii)	transcription halted early / AW ; protein will, be smaller / have fewer amino acids ; tertiary structure / 3D shape different ; binding / affinity, different ; protein inactive ;	3 max
		ref to <i>lac</i> operon ;	
	(iii)	ref to, promoter / operator / 'on' switch ; allele T is regulator ; (protein) binds to DNA ; (protein) binds to repressor and prevents it binding to DNA ; allows RNA polymerase to bind ; AVP ; e.g. enzyme affecting transcription	2 max
(d)	(i)	tt + T / AW, increases number of tillers per plant ; and number of branches per tiller ; ref to comparative figures ;	2 max
	(ii)	inserted into genome randomly / cannot choose where it is inserted ; may be within a frequently expressed gene ; may be after an 'on' switch ; lacks normal controls ; AVP ; e.g. no other alleles affecting it different promoter	2 max

33. 1 <u>both</u> result from changes in allele frequencies ;

- 2 selective breeding often faster than evolution / ora ;
 - 3 <u>both</u> require selection of parents ;
 - 4 to pass alleles to offspring ;
 - 5 selective breeding involves artificial selection ;
 - 6 v. evolution involves natural selection ;
 - 7 man selective agent in selective breeding ;
 - 8 v. whole environment selective agent in, natural selection / evolution ;
 - 9 selective breeding for benefit of man;
 - 10 may be detrimental to organism / e.g. detriment ;
 - 11 v. fitness for environment ;
 - 12 single / few, trait(s) in selective breeding ;
 - 13 v. whole, phenotype / genotype ;
 - **14** AVP;

 15
 AVP;
 8 max

 QWC – legible text with accurate spelling, punctuation and grammar;
 1

[9]

[15]

	(ii)	econ saves rando resisi natur insec resisi frequ	2 max 5 max	2 max 5 max [7]	
35.	(a)	(i)	AaBB white; aaBB black; Aabb white; aabb brown;	4	
		(ii)	(dominant) epistasis;	1	
		(iii)	codes for inhibitor; protein; blocks transcription (of allele coding for pigment); ref to, regulator / promoter; blocks enzyme (producing pigment); AVP; e.g. detail	max 3	
	(b)	(i)	 AaBb × AaBb / AaBb × Aabb; both must have A because they are white; * both must, have a / not be homozygous AA, because some kittens coloured; * both must have b to give brown kittens; <i>`must be heterozygous at both loci' = 1 only</i> 		
		(ii)	at least one / one or both, must have B to give black kittens; credit ref to Punnett square showing genotypes; credit ref to Punnett square showing phenotypes; AaBb × AaBb 12 white : 3 black : 1 brown;;	max 5	
		. /	AaBb \times Aabb 6 white : 1 black : 1 brown;;	max 2	[15]

36. A / 'marbling';

scale 0 - 1;

measure of genetic v. environmental contribution; high value most easily selected for; value <0.02 results in no selective breeding; ease of selection = 'marbling'>growth rate>subcutaneous fat>'rib eye'; max 3 all the traits / even 'rib eye', can be selected for;

increase in use of, GM crop / GE crop / Bt cotton; 37. no / less, insecticide needed; reduced number of cases of pesticide poisoning; ref to figures (e.g. by \times 4.4); reduced cost (insecticide); ref to figures (e.g. by 0.62 US\$ kg⁻¹ / \times 1.38); ref to limitations of survey; AVP;

A reverse arguments

38. (a) 1:2:1;

(b) 1 ref to, codominant / equally dominant (alleles); A incomplete dominance but **R** genes as alternative to alleles appropriate symbols for two codominant alleles; eg G^1 and G^2 2 **R** a capital and a lower case symbol or two different letters such as G and Y 3 parent plant shown or stated to be heterozygous; A if it is explained that any sunny plant is heterozygous gamete genotypes shown appropriately; 4 5 correct offspring genotypes; the 'Sunny' / yellow-green, were heterozygous / genotype shown 6 by diagram; 7 the dark green / the yellow, were homozygous / genotype shown by diagram; max 5 [4]

max 4

1

[3]

	3	totals are (quite) a large sample, pot B / single pot / six, is a small sample:		
	4	if (only) six seeds, there is a greater chance of departing from an expected ratio / AW:		
	5	probability of six seedlings all the same is $\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}$;		
	6	with, many seedlings / the totals, the deviations of the individual results cancel out;		
	7	some departure from an expected ratio is always likely / idea;		
	8	only the yellow number (33) deviates from the expected / 28		
		is half 56;		
	9	chi squared test could be used;		
	10	AVP;	max 3	
(d)	crea A cl	lit ora here lloroplast as alternative to chlorophyll		
	yelle canr die exha	bw seedlings have, no / very little, chlorophyll; not photosynthesise; when, energy reserve / carbohydrate (accept food), in seed is nusted;		
	dark (tha so d ref t ref t	a green grow more because they have more chlorophyll n the yellow-green); ark green have more, photosynthetic products / named product; o competition between the seedlings; o, selection / selective advantage;	max 3	[40]
				[12]

ref to, randomness / chance (sampling);

ref to random fertilisation;

1

2

(c)

39. parental genotypes RrBb Rrbb; \times RB Rb rB rb Rb rb; gametes offspring genotypes RRBb RrBb (RrBb) Rrbb RRbb (Rrbb) rrBb rrbb; offspring phenotypes rough black rough white smooth black smooth white; expected ratio 3 : 3 : 1 : 1; accept correct gametes, offspring genotypes and offspring phenotypes in Punnett square use ecf except for ratio **Reject** the ratio 6:6:2:2 ratio not a stand alone mark – there must be some correct working to support it

_	-	-	
D	Λ	Λ	т
Г	n	//	ı

40.	(i)	length of DNA; codes for a (specific), p found at a, locus / parti	polypeptide / protein / RNA; cular position on, a chromosome;	2	
		variety / form of a gene	e; R type of gene A type of a gene	1	
	(ii)	assume the allele $= cod$	at colour allele		
		(coat colour) gene / alle A no (coat colour male cats, XY / only ha (males have) only one (coat colour) <u>alleles;</u> need black and orange	max 2	[5]	
41.	(a)	$R^{R} R^{R}$ - low, do $R^{R} R^{S}$ - high, (w / re	not have enough vitamin K in diet / ref to figures; arfarin resistant) and have enough vitamin K ef to figures;		
		R ^S R ^S - low, wi	ll be killed by warfarin / ref to effects of warfarin;		
		If anote much abilities f		2	

If quote probabilities for survival less than 50% is low and over 50% is high	3	
---	---	--

(b)	(i)	mutation / named mutation; change in DNA base sequence;	max 1	
	(ii)	variation within population; some individuals produce enzyme not susceptible to warfarin; these individuals survive / selective advantage; reproduce / breed; pass, resistance / advantageous <u>allele</u> , to offspring; R gene those without resistance die;		
		ref to selective pressure of warfarin;	max 5	
(c)	does envi	not directly involve humans; ronment selects individuals that will reproduce;	max 1	
(d)	resis incre R ^R R	tant allele / R ^R , will decrease and , susceptible allele / R ^S , will ease; ^R at a disadvantage due to vitamin K requirements / R ^S R ^S at an advantage due to warfarin being removed;		
	A fro no lo	equencies of both alleles will stay the same; <i>must be linked to second statement</i> onger any selective pressure / no directional selection;	max 2	[12]

42.	(a)	(i)	Aabb - pir aaBB - gre	ık; een;				2	
		(ii)	(dominant ref to, epis ref to, pro- increased, AVP; enzy mak	t) epistasis; static / hypost moter / gene s transcription yme to alter p se more pigme	epistasis; atic / hypostatic, gene; oter / gene switching; ranscription / expression; me to alter pigment / change structure of pigment / ; more pigment / complementary action				
	(b)	(i)	parents gametes offspring ratio	(AaBb) red s AB Ab aB a genotypes;; phenotypes s 1 red spines	spines \times (aabb) b \times ab; A from <i>i</i> minus 1 for each related to genot : 1 pink spines	green spines; Punnett square h of first two miss ypes; A key : 2 green spines;	takes	max 5	
			gametes	AB	Ab	aB	ab		
			ab	AaBb	Aabb pink spines	aaBb areen spines	aabb	e.	
		(ii)	many AaE ref 1 : 1 ra ref linkage ref parenta few Aabb ref 1 : 1 ra ref recomb ref crossin	Bb and aabb; atio of these; e; al types; and aaBb; atio of these; binants; ag over;					
			many red few / no, p 1 : 1 greer ref propor	and green spin bink spined; 1 : red / more ; tions depend ;	ned; green than red; on how close, lo	oci / genes, are;		max 5	[15]
43.	(i)	mutat chance insect susce resist	tion; ce / random ticide acts a ptibles die / ants pass, n	/ preexisting; as selective, ag / resistants su nutation / alle	gent / pressure; rvive; le, to offspring;	A gene		max 3	
	(ii)	mosq obliga part o not ki	uito is vecto atory / AW of life cycle illed by inso	or; A carrier ; is in mosquit ecticide;	0;			max 2	[5]