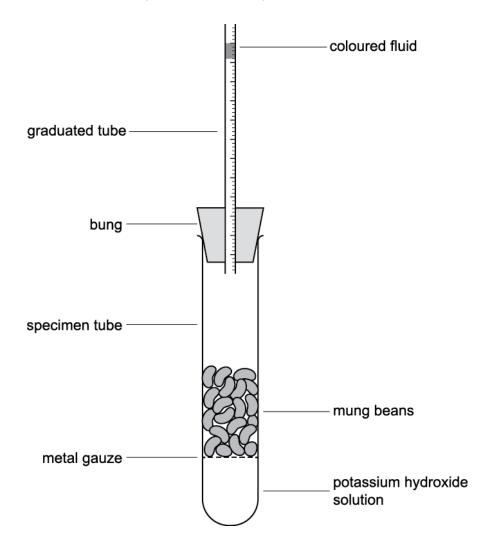
| 1. | Organisms can be classified into taxa by analysing and comparing some of their molecules.                                    |      |
|----|------------------------------------------------------------------------------------------------------------------------------|------|
|    | The molecules below are all involved in respiration.                                                                         |      |
|    | Which would be the most appropriate molecule to study in order to classify organisms into taxa?                              |      |
|    | A ATP synthase B Acetyl coenzyme A C NAD D FAD                                                                               |      |
|    | Your answer                                                                                                                  | [1]  |
| 2. | The following reactions all occur in mitochondria during aerobic respiration:                                                | ۲۰,1 |
|    | <ul><li>1 decarboxylation of pyruvate</li><li>2 reduction of NAD</li><li>3 substrate level phosphorylation of ATP.</li></ul> |      |
|    | Which reaction(s) take place outside the mitochondria in yeast cells?                                                        |      |
|    | A 1, 2 and 3 B Only 1 and 2 C Only 2 and 3 D Only 1                                                                          |      |
|    | Your answer                                                                                                                  | [1]  |
|    |                                                                                                                              |      |

| In which region is FADH <sub>2</sub> produced? |  |  |  |
|------------------------------------------------|--|--|--|
| A Cytoplasm                                    |  |  |  |
| B Outer mitochondrial membrane                 |  |  |  |
| C Inner mitochondrial membrane                 |  |  |  |
| D Mitochondrial matrix                         |  |  |  |
| Your answer                                    |  |  |  |

Cellular respiration occurs in different regions of a cell.


3.

[1]

| 4. | Which of the op  | tions, <b>A</b> to <b>D</b> , is <b>not</b> a coenzyme?                                                                |     |
|----|------------------|------------------------------------------------------------------------------------------------------------------------|-----|
|    | A ATP            |                                                                                                                        |     |
|    | B FAD            |                                                                                                                        |     |
|    | C NAD            |                                                                                                                        |     |
|    | D NADP           |                                                                                                                        |     |
|    | Your answer      |                                                                                                                        | [1] |
| 5. | The statements   | below relate to biological characteristics of the respiratory pigments.                                                |     |
|    | Which of the fol | lowing statements is / are correct?                                                                                    |     |
|    | Statement 1:     | At any partial pressure of oxygen, myoglobin has a lower oxygen saturation level than adult haemoglobin.               |     |
|    | Statement 2:     | The oxygen dissociation curves for fetal and adult haemoglobin are sigmoidal due to the cooperative binding of oxygen. |     |
|    | Statement 3:     | Haemoglobin releases oxygen more readily at low pH.                                                                    |     |
|    | A 1, 2 and 3 a   | re correct                                                                                                             |     |
|    | B Only 1 and 2   |                                                                                                                        |     |
|    | C Only 2 and     |                                                                                                                        |     |
|    | D Only 1 is co   |                                                                                                                        |     |
|    | Your answer      |                                                                                                                        | [1] |

6. A respirometer was used to investigate the rate of respiration in germinating mung beans.

The diagram below shows how the respirometer was set up.



An identical respirometer (not shown) was set up as a control, to confirm that any movement of the coloured fluid was due to respiration.

Which of the options, A to D, should be a feature of the control respirometer?

- A absence of potassium hydroxide solution
- B dried mung beans instead of germinating mung beans
- C pure carbon dioxide inside the specimen tube
- D used in conditions with no light

| Your answer |  |
|-------------|--|

[1]

|    | Which of the options, <b>A</b> to <b>D</b> , is an enzyme in which mutations may affect production of acetylcholine                                                                                                                            | ?    |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|    | A carbonic anhydrase B lactate dehydrogenase C pyruvate decarboxylase D ribulose bisphosphate carboxylase                                                                                                                                      |      |
|    | Your answer                                                                                                                                                                                                                                    |      |
| 8. | The balanced equation for the aerobic respiration of a substrate is given below.                                                                                                                                                               |      |
|    | $2C_{18}H_{34}O_2 + 51O_2 \rightarrow 36CO_2 + 34H_2O$                                                                                                                                                                                         |      |
|    | Which of the statements, A to D, gives the correct respiratory quotient (RQ) and identity of this subst                                                                                                                                        | ate? |
|    | <ul> <li>A RQ = 0.68, and the substrate is a carbohydrate</li> <li>B RQ = 0.71, and the substrate is a fatty acid</li> <li>C RQ = 0.76, and the substrate is a carbohydrate</li> <li>D RQ = 1.00, and the substrate is a fatty acid</li> </ul> | [1]  |
| 9. | Which of the options, A to D, correctly identifies the products of anaerobic respiration in yeast?                                                                                                                                             |      |
|    | <ul> <li>A CO<sub>2</sub>, NAD, ATP and ethanol</li> <li>B CO<sub>2</sub>, NAD, ADP and lactic acid</li> <li>C CO<sub>2</sub>, reduced NAD, ATP and ethanol</li> <li>D CO<sub>2</sub>, reduced NAD, ADP and lactic acid</li> </ul>             |      |
|    | Your answer                                                                                                                                                                                                                                    | [1]  |

[1]

Acetyl coenzyme A (Acetyl CoA) combines with choline to produce acetylcholine.

7.

| 10. | Oxidative phosphorylation is the process in which the transfer of electrons from reduced NAD or reduced FAD to oxygen results in the production of ATP. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |  |  |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--|--|
|     |                                                                                                                                                         | ch of the options, ${f A}$ to ${f D}$ , is the number of ATP molecules gained from the oxidation of <b>two</b> molecules outcome of the contract | f   |  |  |
|     | Α                                                                                                                                                       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |  |  |
|     | В                                                                                                                                                       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |  |  |
|     | С                                                                                                                                                       | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |  |  |
|     | D                                                                                                                                                       | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |  |  |
|     | You                                                                                                                                                     | r answer [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |  |  |
| 11. | Prot                                                                                                                                                    | on pumps establish electrochemical gradients, which are required for ATP production.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |  |  |
|     | Wh                                                                                                                                                      | ich of the options, A to D, are regions of a plant cell into which protons are pumped?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |  |  |
|     | Α                                                                                                                                                       | chloroplast stroma and mitochondrial intermembrane space                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |  |  |
|     | В                                                                                                                                                       | chloroplast stroma and mitochondrial matrix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |  |  |
|     | С                                                                                                                                                       | thylakoid space and mitochondrial intermembrane space                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |  |  |
|     | D                                                                                                                                                       | thylakoid space and mitochondrial matrix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |  |  |
|     | You                                                                                                                                                     | r answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | [1] |  |  |

**END OF QUESTION PAPER** 

## **Mark Scheme**

| Question |  | Answer/Indicative content | Marks | Guidance                                                                                                                                                                                  |
|----------|--|---------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1        |  | А                         | 1     |                                                                                                                                                                                           |
|          |  | Total                     | 1     |                                                                                                                                                                                           |
| 2        |  | А                         | 1     |                                                                                                                                                                                           |
|          |  | Total                     | 1     |                                                                                                                                                                                           |
| 3        |  | D                         | 1     |                                                                                                                                                                                           |
|          |  | Total                     | 1     |                                                                                                                                                                                           |
| 4        |  | A                         | 1     |                                                                                                                                                                                           |
|          |  | Total                     | 1     |                                                                                                                                                                                           |
| 5        |  | С                         | 1     |                                                                                                                                                                                           |
|          |  | Total                     | 1     |                                                                                                                                                                                           |
| 6        |  | B√                        | 1     |                                                                                                                                                                                           |
|          |  | Total                     | 1     |                                                                                                                                                                                           |
| 7        |  | C√                        | 1     |                                                                                                                                                                                           |
|          |  | Total                     | 1     |                                                                                                                                                                                           |
| 8        |  | В ✔                       | 1     | Examiner's Comments If candidates knew the equation for the respiratory quotient, this was an easy mark.                                                                                  |
|          |  | Total                     | 1     |                                                                                                                                                                                           |
| 9        |  | A <b>✓</b>                | 1     | Examiner's Comments Only the candidates who understood that the reduced NAD is oxidised in anaerobic respiration could respond correctly, with option C being a very tempting distractor. |
|          |  | Total                     | 1     |                                                                                                                                                                                           |
| 10       |  | D✓                        | 1     | Examiner's Comments A straightforward question but most candidates did not recall the information needed for a correct response.                                                          |
|          |  | Total                     | 1     |                                                                                                                                                                                           |
| 11       |  | С                         | 1     |                                                                                                                                                                                           |
|          |  | Total                     | 1     |                                                                                                                                                                                           |