Qu	Questio n		Answer/Indicative content	Marks	Guidance
1			В	1	
			Total	1	
2			C√	1	
			Total	1	
3			D√	1	
			Total	1	
4			A]	1	Examiner's Comments A little over half of candidates achieved this mark.
			Total	1	
5			D√	1 (AO1.1)	Examiner's Comments Only a few candidates scored the correct answer (D) with most common incorrect answer (C). It is possible that some candidates did not appreciate that D is not about genetic modification.
			Total	0	
6			C√	1(AO2.4)	
			Total	1	
7			В√	1(AO1.2)	
			Total	1	
8			C√	1(AO2.2)	
			Total	1	
9			A√	1(AO1.1)	
			Total	1	

Mark scheme - Manipulating Genomes

10	а		B, D, C (1)(1)	2	One mark for D after B and one for C after D
	b		6 (1)(1)	2	Correct response = 2 marks If response incorrect ALLOW one mark for 600 nucleotides / bases ALLOW one mark for idea of one error every 100 nucleotides
	с		ACCTGCCCTGG	2	
			Total	5	
11	а		working out the sequence / AW , of nucleotides / bases √	1 (AO1.2)	IGNORE base pairs Examiner's Comments About half of responses were credited the mark for this straightforward definition. Candidates who used the irrelevant term 'base pairs', or who suggested that DNA was made of amino acids, received no credit. Some responses misinterpreted the question and attempted to describe the process of DNA sequencing. Occasionally, these responses included an accidental definition and gained a mark.
	b		100 000 000 / 100 million / 1.0 ×10 ⁸ / 1 ×10 ⁸ √√	2(AO2.6)	ALLOW 1 mark for 100 000 / 1 ×10 ⁵ / 10 ⁸ <u>Examiner's Comments</u> Candidates performed better on this than on other calculations and many answered in standard form. It is noteworthy that answers presented in standard form, although not required, were less likely to be accidentally out by a factor of 10.
	с	i	high throughput sequencing √ shotgun sequencing √ whole genome sequencing / WGS √ next generation sequencing / NGS √ pyrosequencing / use of luciferase √ massive parallel sequencing √	1 max (AO1.2)	ALLOW swapping radioactive tags for fluorescent tags Examiner's Comments A correct answer was seen only in about a quarter of responses; of those, pyrosequencing was the most common,

				although all others were seen occasionally. Common incorrect responses included 'PCR', 'electrophoresis' and 'use a computer'.
ii	G molecule of ATP (contains) (contains) guanine / adenine / guanosine adenosine (contains) (contains) deoxyribose (contains) ribose 1 phosphate 3 phosphates		2 max (AO1.1)	Mark the first answer in each box. IGNORE phosphorus / phosphate molecule IGNORE phosphorus / phosphate molecule Examiner's Comments This AO2 question had very few candidates achieve full marks. A majority of candidates gained 1 mark but less than a third scored both. Many candidates were confused by the context: some answers suggested that candidates thought G was DNA. Many candidates thought that G was guanine. Such responses could gain the first two marking points but tended not to as the third marking point was the one most commonly attempted. The final marking point was never seen. Only a small minority of responses did
	phosphate no phosphate attached to C ₃ attached to C ₃		not write comparative structural aspects in the same row. Those who, for example, wrote 'guanosine' next to '3 phosphates' in the same row could not be credited.	
iii	sequence / order , of bases <u>cc</u> <u>for</u> , sequence / order , of amin acids √ (each) triplet / three bases / cc , (codes) for , one amino acid	no odon	2 (AO1.1)	IGNORE base pairs IGNORE base pairs <u>Examiner's Comments</u> Surprisingly few responses scored marks here. Those that did were most likely to be credited a mark for the idea that 3 bases represents the code for one amino acid. Linking the base sequence to the amino acid sequence was less common. Many responses gave detailed descriptions about DNA sequencing and appeared to be answering the question 'Describe DNA sequencing'. Candidates are reminded to read the question carefully. Of those candidates who had read the question carefully, many confused bases with amino acids.

			Ignore prompts and mark as prose
			9 ALLOW allows <u>specific</u> vaccines to be produced
			Examiner's Comments
			This was a very low scoring question. Although, all-in-all, it was quite a difficult question, candidates seemed to lack preparation in two areas:
d	 sequencing (high) mutation (rate) means many, strains / AW, of virus exist √ can predict (viral), strain / protein / antigen √ (so) vaccine contains correct <u>antigen</u> √ bioinformatics facilitates access to large amount of data √ facilitates access to data on DNA and proteins √ idea that format (of information) is universal √ can identify source of outbreak √ can identify vulnerable populations √ vaccination program can target certain , area / individuals √ 	4 max (AO1.1) (AO2.1)	preparation in two areas: The question mixed Module 6 topics – DNA sequencing and bioinformatics, with a Module 4 topic – vaccinations. Candidates seemed a little more comfortable with DNA sequencing but, unless they remembered and understood how vaccinations work, it was difficult to achieve many marks. It was not uncommon to see marking point 2 but candidates then often suggested that the vaccine would contain an antibody or that it was a drug that somehow affected the functioning of the virus. Bioinformatics is a new topic on the specification and was very poorly understood by candidates. The vaccination-related marking points in the lower half of the mark scheme were occasionally given, most often marking point 9, but the exclusively bioinformatics points, 4,5 and 6, were almost never seen. Exemplar 11 sequencing Can determine the genetic code of the second data the complementation related multiple in the lower half of the mark scheme were occasionally given, most often marking point 9, but the exclusively bioinformatics points, 4,5 and 6, were almost never seen. Exemplar 11 sequencing Can determine the genetic code of the second data therefore the antigen proteine the multiple and proteine the antigen prot
			Exemplar 12

				sequencing Allows the sequences busit b be discovered which Shows the entire action of that the choin wirds only brand therefore the profess it produces, so there provide for and tarageted and derivated or articolie on the product that are conservatively to provide the transmitter of the provide that are database of genues the sequence of bartes to a database of genues to discover the provide that the contrained produces to discover the provide that the response also achieves marking point 2 but misses out on marking point 3 as the response implies that vaccinations are drugs that directly target the biochemistry of the virus or, again, contain antibodies.
		Total	12	
12	i	1/8 or 0.125 (1)(1)	2	Correct response = 2 marks If response incorrect ALLOW one mark for working e.g. 3/24 ALLOW 12.5%
	ii	Sanger / chain termination technique (1) Only 5 errors per 100 000 nucleotides compared to, 50 in Roche pyrosequencing / 500 in SOLiD / 1000 in Helicos (1)	2	
		 base sequence of normal allele and (known) alternatives held (in database) (1) computational analysis allows rapid comparison of sequences with newly sequenced allele (1) amino acid sequence / protein structures, also held (in database) (1) <i>idea of</i> computer modelling of new protein structure from base sequence (1) 	2	
		Total	6	
13	i	60 (cm³) √	1 (AO2.2)	1.44 dm ³ = 1440 cm ³ 1440 / 24 = 60
	ii	inbreeding / AW, reduces genetic diversity √	1 max (AO 2.5)	ALLOW 'inbreeding creates smaller gene pool' ALLOW 'more homozygous recessive

		(more) homozygous recessive alleles (for CPF) √ <i>idea of</i> allele for CPF linked to gene for desirable trait (so inherited together) √		genotypes (for CPF)' ALLOW (leads to) inbreeding depression e.g. 'CPF gene on same chromosome as (named) desirable trait '
		<i>idea of</i> compare genomes of, dog breeds / individual dogs √ <i>idea of</i> identify, alleles / genotypes / base sequences (in WHTs), that are present (only) in dogs with CPF √	2 max	e.g. 'compare DNA of dogs with and without CPF' e.g. 'identify, allele / gene, that causes CPF'
	iii	<i>idea of</i> identify dogs that are carrying (the allele for) CPF \checkmark (use of) computational biology / bioinformatics, to link genes with CPF \checkmark <i>idea of</i> linking DNA sequences to specific proteins (i.e. proteomics) \checkmark	(AO 2.5)	e.g. 'can identify mutated protein from DNA sequence'
	iv	weakened / dead / inactivated, (parvo)virus ✓ antigens from the (parvo)virus √ mRNA to produce(parvo)virus proteins √	1 max (AO2.1)	IGNORE 'dormant form of virus' ALLOW 'attenuated form of virus' ALLOW viral coat proteins
	v	memory cells have, reduced in number / AW √	1 (AO2.5)	ALLOW to produce more memory cells (to improve immunity) DO NOT ALLOW 'no memory cells left'
		Total	6	
14		in most people, the genome is very similar / most genes the same (1) using coding sequences would not provide unique profiles (1) (parts of) non-coding DNA contains variable numbers of, short tandem repeats / repeating	3	
		sequences (1) Total	3	

15	i	(protease) digests / breaks down / hydrolyses, proteins associated with DNA / histones √	1	IGNORE digests / breaks down, enzymes / nucleases / contaminating proteins Examiner's Comments Another challenging question. Some candidates did not get credit due to a lack of detail in answers, e.g. 'protease breaks down protein in the mixture', or 'breaks peptide bonds in DNA'. To gain credit answers needed to refer to the breakdown of proteins associated with the
	ii	10 ^{3.61} √ √	2	DNA, such as histones. ALLOW 4096 /3.61/ 3.612 for 1 mark ALLOW 10 ^{3.612} for 2 marks <u>Examiner's Comments</u> Few candidates got this question entirely correct. Some achieved one mark for stating 4096 or 3.61. Candidates seemed unable to convert logs to give the correct response.
	11	temperature damage to, template / strand / fragment ✓ (sometimes, once separated) template / strands, may rejoin (rather than bonding to primers) ✓ lack of, primers / (free) nucleotides ✓ primers fail to, join / attach / anneal (to fragment) ✓	1 max	IGNORE 'temperature damage to DNA' IGNORE 'damage to fragment' ALLOW 'strands fail to separate' IGNORE lack of, enzymes / bases <u>Examiner's Comments</u> A small proportion of candidates achieved the mark in this question, with the majority of correct responses being credited for a lack of primers or free nucleotides, or the primers failing to anneal. Common incorrect responses included 'DNA is lost', 'DNA is not replicated correctly' or 'RNA/DNA polymerase is denatured at high temperatures'.

				DO NOT ALLOW RNA polymerase
				Examiner's Comments
		(Taq DNA) polymerase √		Not many candidates achieved full marks on this question as many were unable to fully explain the changes they suggested. Many
		Examiner's Comments		candidates identified the need for a buffer, running it for longer or adding a stain, but
	iv	The majority of candidates got this question correct, giving either polymerase or DNA polymerase as their answer. Incorrect responses included 'RNA polymerase', 'DNA ligase' and 'DNA helicase'.	1	often lost the mark because they did not explain why the change was needed. The extra time was often linked to the DNA needing to move further, rather than to separate more. The buffer was to keep the pH constant, rather than allow current to flow, and many did not link the dye to better visualisation of the bands/patterns. There was also a lot of confusion between anode and cathode and which way the DNA moved.
		use, alkaline solution /buffer (solution) AND Solution carries charge / current (to separate fragments)√		
		(use) Southern blotting / described AND to transfer fragments to a membrane √		Mark first two changes described
	v	use (radioactive / fluorescent) probes / tags / dyes / labels /stains AND to , visualise / AW , bands/ patterns √	2 max	
		<i>idea</i> of testing for longer than one minute or carrying out preliminary tests to assess the optimum run time		ALLOW to see the position of the fragments
		AND <i>idea of</i> (ensures) separation (of DNA fragments / bands) √		
		Total	7	
16		thermostable OR does not, denature / AW, at 95 °C	2	ALLOW temperature values 93 – 97 °C in correct context.
		(during DNA strand separation) (1)		DO NOT ALLOW "killed" for denatured.

			so PCR can be cycled repeatedly without stopping (to reload with enzyme) (1)		IGNORE refs to optimum working temperature, which would apply equally to less thermostable polymerases.
			Total	2	
17		i	R used to label a phosphodiester bond √	1	
		ii	p used to label a hydrogen bond \checkmark	1	
			Total	2	
18	а	i	radioactive, labels / tags (1) fluorescent, labels / tags (1) UV, light / radiation (1) (named) visible stain (1)	2	
		ii	X placed on any fragment below Y (1)	1	X can be placed in any of the 9 lanes, but must be touching a DNA band that is lower in the image (nearer the cathode) than Y
	b	i	denature / unfold, protein AND <i>idea of</i> exposes charges or hydrophobic region (1)	1	
		ii	<i>idea that</i> different proteins have different overall charges (1) <i>idea that</i> (binding of) SDS makes all proteins negatively charged (1) <i>idea that</i> proteins will be separated by, mass / length (1) <i>idea that</i> proteins move in the same direction (1)	2	
			Total	6	
19			electrophoresis	1	
			Total	1	
20			<i>Fertility</i> breed GM stock with non-modified stock (1) see if offspring fertile (1) if so they should be classed as the same species (1) ora <i>Morphology</i> Compare several individuals from GM and non-GM groups (1) in respect of several physical structures (1)	3	Marks awarded should be from one outlined investigation and the conclusion from its results. If more than one investigation suggested, mark the first investigation and IGNORE the others.

	if should be the second se		1
	if similar they should be classed as		
	one species (1) ora		
	Ecology		
	observe how both function in the		
	wild (1)		
	occupy the same or different		
	niche(s) (1)		
	if same niche they should be		
	classed as one species (1) ora		
	classed as one species (1) ora		
	Genetics		
	compare DNA (1)		
	by electrophoresis (1)		
	same pattern should be classed as		
	 one species (1) ora		
	Total	3	
			Bood on proon and look for any three
			Read as prose and look for any three
			correct mp's
			for mut and 2
	1 companyations have (malasticular)		for mp1 and 2
	1. separates by (relative),		IGNORE separates by size of charge on
	adsorption / solubility / interaction		molecule
	with the stationary phase in TLC		
	and		ACCEPT mass / length for size
	(separates) by size in		
	electrophoresis √		
	2. TLC separates non - charged		
	particles		
	and		
	electrophoresis (only) separates		ACCEPT electrophoresis uses, current /
21	charged particles \checkmark	3 max	voltage / charge / (named) electrode(s)
	3. electricity, used for		Examiner's Comments
	electrophoresis / not used for TLC		The differences between thin layer
	\checkmark		chromatography and the form of
	· · · ·		electrophoresis used to sequence DNA were
	4. buffer solution, used for		well understood by the majority of
	electrophoresis / not used for TLC		candidates. Most appreciated that
	\checkmark		electrophoresis required electricity in order to
			separate the DNA fragments. Many also
	5. dyes used in TLC		stated that in electrophoresis, DNA would be
	OR		separated by mass or length, while in TLC,
	radioactive / fluorescent , tags /		molecules would be separated by solubility
	nucleotides, used in		or interaction with the stationary phase.
	electrophoresis \checkmark		There were several references to fluorescent
			or radioactive tags being needed to visualise
	6. Idea of electrophoresis is,		the DNA fragments, or the use of dyes, such
	nucleotides, used in electrophoresis √		or interaction with the stationary phase. There were several references to fluorescent or radioactive tags being needed to visualise

		automated / computerised / uses laser scanning (to analyse sequence) / TLC is not automated √		as ninhydrin, in TLC. Some commented on the need for a buffer in electrophoresis although there was little mention of electrophoresis being computerised or automated. Hardly any mention of the separation of charged particles in electrophoresis and non-charged particles in TLC was seen.
		Total	3	
22 a	a	base sequence in genes is unchanged √ <i>idea that</i> mRNA is inhibited, therefore translation does not occur √ gene is not expressed √	2 max	
þ		Please refer to the marking instructions on page 4 of this mark scheme for guidance on how to mark this question. In summary: Read through the whole answer. (Be prepared to recognise and credit unexpected approaches where they show relevance.) Using a 'best-fit' approach based on the science content of the answer, first decide which of the level descriptors, Level 1, Level 2 or Level 3, best describes the overall quality of the answer. Then, award the higher or lower mark within the level, according to the Communication Statement(shown in italics): award the higher mark where the Communication Statement has been met. award the lower mark where aspects of the Communication Statement have been missed		

		 The science content determines the level. The Communication Statement determines the mark within a level. Level 3 (5–6 marks) Describes the process in detail, with no significant errors. There is a well-developed line of reasoning, which is clear and logically-structured and uses scientific terminology at an appropriate level. All the information presented is relevant and forms a continuous narrative. Level 2 (3–4 marks) Describes some details of the process, with only minor errors. There is a line of reasoning presented with some structure and use of appropriate scientific language. The information presented is mostly relevant. Level 1 (1–2 marks) Describes aspects of the process, but with significant omissions or errors. The information is communicated with only a little structure. Communication is hampered by the inappropriate use of technical terms. 0 marks 	6	Indicative scientific points may include: • method for gene extraction from the bacterium (e.g. conversion of mRNA to cDNA with reverse transcriptase, or removal of gene with restriction enzymes) • use of appropriate vector (e.g. <i>Ti</i> plasmid of <i>Agrobacteriumtumefaciens</i>) • electroporation • use of DNA ligase • reference to marker genes and their purpose • electrofusion
		Total	8	
23	а	restriction, enzyme / endonuclease] same]	3 max	ALLOW restriction (endonuclease) IGNORE sticky ends

	complementary]		Examiner's Comments This was generally well answered by most candidates. The most common incorrect response was the third, where several candidates put 'sticky' or 'exposed'.
			ALLOW the bit of DNA combines with ring of bacterial DNA
			ALLOW complementary sticky ends
	the gene / the DNA fragment, inserted into plasmid)		
			DO NOT CREDIT in context of making hydrogen bonds
b	complementary bases (pair / anneal)] formation of hydrogen bonds] formation of phosphodiester bonds] using (DNA) ligase]	3 max	Examiner's Comments This question differentiated well between candidates with all marking points seen. Common responses that were not credited included referring to the plasmid imprecisely as DNA, or incorrectly as a bacterium. Many candidates also stated that the DNA ligase was used to form hydrogen bonds and were not credited for mentioning the ligase. Some candidates described the events occurring in step D, as opposed to C, and gained no marks. Precise and correct use of key terms is essential when answering knowledge and understanding questions such as this.
	use of marker (gene)]		IGNORE replica plating ALLOW (gene for) glowing ALLOW use GFP
	(genes for) fluorescence / colour change 〕		
с	(examine fluorescence under) UV, light / radiation	3 max	ALLOW test for survival in antibiotic
	antibiotic resistance (gene) (then) grow on agar containing antibiotic		Examiner's Comments Around half of candidates achieved at least one mark. All marking points were seen. A number of candidates used extra space to describe in detail the process of replica plating. As these candidates often achieved

					full marks anyway, their time might have been better spent on other questions. A minority of candidates discussed testing to see if the donor gene was expressed and received no credit.
	d		make, single stranded DNA / cDNA / complementary DNA] using, reverse transcriptase / reverse transcription] make double-stranded DNA using DNA polymerase]	2 max	IGNORE mRNA ALLOW make copy DNA Examiner's Comments Around half of candidates achieved one mark and a quarter got two, usually the first two points on the mark scheme. Some failed to gain the first mark by referring simply to DNA rather than cDNA or single-stranded DNA. Some candidates discussed mRNA or PCR and electrophoresis and gained no credit.
			Total	11	
24		i	 X restriction (endonuclease) √ Y (DNA) ligase √ electroporation / culture Z heating / heat shock / calcium salts √ 	3 (AO1.2)	ALLOW electric shock ALLOW calcium ions
		ii	(acts as) marker / reporter, gene √ <i>idea of</i> to indicate which bacteria have taken up the plasmid √	1 max (AO2.5)	e.g. 'can identify transgenic bacteria'
		iii	0.00025 or 2.5 x 10 ⁻⁴ √√	2 (AO2.6)	FIRST CHECK ON ANSWER LINE If answer = 0.00025 or 2.5 x 10 ⁻⁴ award 2 marks If the answer is incorrect, award one mark for 1/400 = 0.0025 or 2.5 x 10 ⁻³ OR 0.0025/1000 = 0.0000025 or 2.5 x 10 ⁻⁶ OR 0.0000025 x 100 (= 0.00025 or 2.5 x 10 ⁻⁴)
		iv	<i>idea of</i> extract DNA from cancerous liver and (named) healthy tissue \checkmark choose primers for, E coli / β - galactosidase, DNA \checkmark <i>idea of</i> comparing rate of DNA amplification \checkmark	2 max (AO3.4)	e.g. 'compare amount of DNA after 30 cycles of PCR'

v	<i>idea of</i> safety of genetic engineering (in bacteria) has been established √ <i>idea of</i> few animal rights issues to consider √	1 max (AO3.2)	 e.g. 'It's been done for many years without any problems' / 'genetic engineering is safe' e.g. 'bacteria do not have emotions like animals that can be engineered' / 'bacteria do not feel pain' / 'bacteria are not conscious' Examiner's Comments Most candidates gave appropriate suggestions for the functions of proteins A and C, based on the information given in Table 4.1, and could recognise that antibiotic A22 could cause problems in humans by binding to actin in muscles. Likewise, many candidates used the data in Table 4.2 to evaluate the advantages and disadvantages of the two antibiotics, gaining both marks. However, some candidates lost marks by not being precise in their responses, for instance by saying oritavancin cures fewer bacterial infections without naming the specific infection <i>Streptococcus</i>, or by saying it has fewer side effects without naming the side effects. Many candidates correctly identified X and Y in (c)(i) but few could name Z correctly. Few candidates knew why antibiotic genes are used in plasmids for (c)(ii). Many candidates referred to the gene providing bacteria with protection from antibiotics without stating why this was done in this case. Many candidates struggled to gain both marks for the two- step calculation in (c)(iii), although many gained a mark for working out one of the steps correctly. Candidates often understood the technique of PCR, but could not apply this technique to compare growth rates of <i>E.coli</i> in different tissues for (c)(iv). Those that suggested taking DNA samples from both tissues and
			of PCR, but could not apply this technique to compare growth rates of <i>E.coli</i> in different

		Total	9	
25		(increase in antibiotic) <u>resistance</u>)	1	DO NOT CREDIT immune Examiner's Comments Antibiotic resistance was correctly identified by a little under half of candidates. As this is a science qualification, candidates who discussed 'playing God' or ethical concerns about bacterial rights received no credit.
		Total	1	
26	a	 * Level 3 (5–6 marks) A complete explanation detailing objections and improvements for validity, accuracy and control. The evaluation of the data / procedures is critical, providing refinements that address all the significant issues concerned. There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3–4 marks) A partial explanation detailing objections and improvements for some of the teachers concerns. OR objections and improvements for all of the teachers concerns. A range of aspects of the data / procedures are evaluated resulting in sound but not comprehensive refinements. There is a line of reasoning presented with some structure. The information presented is in the most-part relevant and supported by some evidence. Level 1 (1–2 marks) A simple explanation, linking some objections or improvements to some of the teachers concerns. 	6	IGNORE professions of agreement with the tutor. Indicative scientific points may include: Results not valid Objections: • cause of collapse not recorded / plants may have collapsed for different reasons • number of collapsed less meaningful than percent Improvements: • determine which plants collapsed due to corn borer • dissect stems to seek larvae • use percent collapsed out of, original / still standing, numbers. Results may not be accurate Objections: • collapsed plants may have been counted twice from plot-edge • some collapsed plants may not have been noticed from plot-edge • students may have counted differently from each other Improvements: • remove / mark, collapsed when counted

			Evaluation and / or refinement, links to data / procedure in some respects but links are not clearly shown. The information is basic and communicated in an unstructured way. The information is supported by limited evidence and the relationship to the evidence may not be clear. 0 marks No response or no response worthy of credit.		 use narrow strips as plots so that collapsed not missed have all plots counted by the same student have more than one student counting average the counts. Variables not controlled Objections: no account of natural variation in plant susceptibility genetic variations between Bt and regular corn Improvements: use, cloned / genetically identical, plants in each plot. perform genetic modification to Bt on same clones as used for other plots.
	b		recommend GM Bt corn, because spray may not reach all larvae / larvae are inside plant (stem) / shielded from spray (1)	1	procedure.
			Total	7	
					IGNORE refs to legality or ethics
27		i	SomaticGerm-linecannot be, inherited / passed to offspring ✓ (gene introduced intro) / body / ✓ (gene introduced intro) sperm / ✓	3 max (AO 2.5)	IGNORE affects / does not affect (offspring) IGNORE adult / diploid DO NOT CREDIT alters DNA ALLOW gamete producing cell ALLOW somatic cell / germ-line cell

	non-	egg / gamete /		Examiner's Commen	its
	reproductive, cell	sex cell / embryo / zygote		Most candidates gained at least one mark but only a few scored full marks. References to inheritability, the type of cell involved, or	
	only some cells get (functional), gene / allele	all cells get (functional), gene / allele		the longevity of treatm credited but relatively discussed inserting ge responses were not av	ent were regularly few candidates enes or alleles. Many warded marks because
	short-term / temporary / needs repeating / non-	long-term / permanent / does not need repeating		-	
	permanent			Exemplar 3	
				Somatic	Germ-line Tulecul in most
				Legal in most countries Will only cultert the patient and not offering. Will only cultericate segurptones	Illegal in most countries Will affect the othe cell and any affiprity produced. Cas are cliseone cell together.
				row addresses legal is covered by the mark s row is vague about inh stating that offspring a 'affected' by the treatm	scheme. The second heritances, merely hre (or are not) hent. The third row rmanent and temporary
				IGNORE mutation with qualification	hout further
				ALLOW altered codor	าร
	frameshift √ altered triplet(s)	\checkmark		ALLOW affects, trans the next gene along	cription / expression, of
ii	-	y, genes (on same witched, on / off √	2 max (AO 2.1)	ALLOW inserted into	promoter
	-	ne could disable a e if inserted into it \checkmark		Examiner's Commen	<u>its</u>
				This was a synoptic que mutations and gene ex few candidates scored candidates did not app	xpression but only a any marks. Many

				significance of 'in that chromosome'. A number of candidates discussed epistasis and a minority discussed aspects of meiosis, which were not credited.
	=	(Huntington's) protein / Huntingtin, still, synthesized / present √	1 (AO 2.1)	Examiner's Comments This stretch and challenge question was answered correctly by very few high ability candidates. Most responses tended to reword the question without adding to the information given; for example, writing 'because the Huntington's disease allele is dominant'. Few candidates seemed to appreciate that alleles are dominant because they synthesize a particular protein and, in the case of Huntington's disease, huntingtin would continue to be synthesised even in the presence of a healthy allele.
		Total	0	