Question		on	Answer		Guidance
1	(a)	(polar and brown bear ;		
		(ii)	no because one, more closely related to / in same group as , raccoons and one , to / with, bears / AW ;		DO NOT CREDIT answer if in context of yes
	(b)) (knowledge , tentative / uncertain / subject to change ; to re-test / check, hypotheses / results ;		2	IGNORE incomplete, new technology IGNORE to validate
		(ii)	 <i>idea that</i> haemoglobin could be , an <u>adapt</u>ation (to the environment) / an <u>adapt</u>ive feature ; <i>idea that</i> low oxygen partial pressure is selective agent or both subject to the same selection pressure ; (haemoglobin of both) has high oxygen affinity / dissociation curve shifted to left ; convergence / similarity not due to shared ancestry ; 	3 max	 3 ACCEPT haemoglobin can uptake O₂ at low partial pressure 4 ACCEPT description e.g. "changes happen to both independently" IGNORE "red and giant panda may not be closely related" (as given in question)

Question	Answer	Mark Guidance	
(c)	step 2PCR / polymerase chain reaction ;step 3genetic modification / genetic engineering ;step 4electrophoresis ;	3	FA on each line ACCEPT gene cloning / transformation ACCEPT (gel) chromatography
(d)	triplet code or 3 bases = 1 amino acid ; 525 ; 3 bases are , stop / (chain) termination , codon ;	3	DO NOT CREDIT triplet makes amino acid
(e) (ox ;	1	FA
(ii)	 genetic code is degenerate ; more than 1, triplet / codon, for same amino acid ; silent / neutral, mutations ; <i>idea that</i> DNA, changes more than / is more different to, protein ; 	3 max	 ACCEPT redundant DO NOT CREDIT 'make' the same amino acid ACCEPT polypeptide / amino acid sequence ACCEPT nucleotide sequence for DNA
	Total	17	

Question		ion	Expected Answer		Additional Guidance		
2	(a)	(i)	microbes / (living) organisms / cells / enzymes ;		CREDITmicroorganisms / bacteria / prokaryotes / fungiCREDITliving thingsCREDITcell components / parts of cells		
			(make) product / for human benefit / (carry out) conversion / reaction / industrial process ;	2	CREDIT example such as (named) food or medicine BUT IGNORE cheese (as stated in question) IGNORE process unqualified		
2	(a)	(ii)			Mark the first two suggestions IGNORE contamination / sterile IGNORE idea of preserving milk		
			microbes / AW , killed / removed / not present ;		AW for microbes as in (a)(i) plus ACCEPT organisms		
			enzymes <u>denature</u> d;		DO NOT CREDIT microbes denatured		
			(so no) competitors / unwanted reactions / (human) health risk ;		CREDIT (no) competition CREDIT (no) food spoilage / change of flavour / loss of quality CREDIT (no) pathogens / harmful microbes / TB		
				2 max	"Kills harmful microbes" or "Kills pathogens" scores 2 marks (mps 1 & 3)		

Question		ion	Expected Answer	Mark	Additional Guidance
2	(b)	(i)			Award mp 1 plus 2 max from the other mark points
		1	enzyme;		1 ACCEPT globular / tertiary / catalyst / catalytic (protein)
		2	<i>plus any 2 of the following</i> (enzyme) not, changed / used up ; ora	1	2 ora = can be used again / re-used IGNORE enzyme recycled
		3	idea of ESC (forms) / substrate and enzyme (bind);		 3 ESC = enzyme-substrate complex ACCEPT substrate entering active site
		4	products (and enzyme) released at end ;	max 2	
2	(b)	(ii)			Mark the FIRST suggestion on each numbered line
		1	(enzyme can be removed to be) used again;		IGNORE 'cheaper' without qualification
		2	(enzyme can) to leave pure(r) product; ora		2 ACCEPT cheaper / easier, downstream processing
		3	(enzyme) more stable / more efficient / works better ;		3 CREDIT less susceptible to, pH / temperature, change / extremes
				2	<pre>"enzymes work at high temperatures" = 0 "enzymes work at higher temperatures" = 1 (because comparative statement made)</pre>

Question		Expected Answer		Additional Guidance
2	(c) 1 2 3 4 5 6 7 8	This is a QWC question Section I - Obtaining the gene use restriction, enzyme / endonuclease ; to, cut out / get / isolate, (rennin) gene / DNA coding for rennin or to, fragment / digest, DNA ; <u>gene</u> probe ; OR obtain rennin mRNA ; (use) reverse transcriptase ; to make cDNA ; OR sequence, rennin (protein) ; work out base code ;		 CREDIT named example e.g. Eco R1, Bam H1, Hin dIII DO NOT CREDIT 'cut gene' IGNORE 'break up DNA' NOTE 1-9 CREDIT whichever of the three alternative "obtaining the gene" protocols yields most marks, either award marking points 1- or 4-6
	9 10 11 12	make this DNA sequence ; sticky ends ; Section II - Vector cut (open), plasmid / phage ; using same <u>restriction</u> enzyme ;		 or 7-9 10 can be awarded, once only, in Sections I or II 11 DO NOT CREDIT 'cut out plasmid' DO NOT CREDIT 'ring of DNA' unless it is clear that plasmid is being referred to 12 CREDIT same named enzyme (re. mp1)
	13 14 15 16 17 18 19	annealing / base pairing of sticky ends ; join sugar-phosphate backbones ; (using DNA) ligase ; <u>recombinant</u> , vector / plasmid / phage / DNA ; Section III - Introduction into host cell mix with bacteria ; detail of conditions ; <u>transform</u> ation (plasmid) / <u>transduc</u> tion (phage) ;		 13 CREDIT idea of sticky end bases hydrogen bonding 14 CREDIT formation of phosphodiester bonds 18 e.g. Ca²⁺ ions added / heatshock (freeze then inc to 40°C) 19 CREDIT transform / transformed / transduce / transduced
		QWC – sequencing of steps – at least 1 mark point scored from each of the three sections, in the correct order ; TOTAL	max 7 1 17	IGNORE transgenic I. obtaining gene (mp 1 - 9) followed by II. vector (mp 13 - 16) followed by III. introduction to host cell (mp 17 - 19)

Question		ion	Expected Answers			Marks	Additional Guidance
3	(a)						One mark per box
				similarity	difference		
			structure	mitochondria or vesicles or postsynaptic receptors ;	NMJ membrane(s), wavy / AW * ora or receptors different (shape) or enzymes in different places ;		difference NMJ is neuromuscular junction * AW A CEPT wiggly / bumpy / not smooth / rough / larger SA / any suitable description but IGNORE microvilli
			function	(neuro)transmitter, released / crosses gap or changes potential difference / AW ** or enzymes break down (neuro)transmitter ;	different neurotransmitters / ACh vs. dopamine or muscle contraction vs. nerve impulse or different enzymes ;		<i>difference</i> ACh is acetylcholine <i>similarity</i> ** AW CREDIT depolarises / -70 mV → +40 mV but IGNORE pass on action potential
3	(b)	<i>(</i> i)				4	Award mp1 and if correct any 1 from the remaining
5	(0)	1	phenelzine	;		1	points
		2 3 4	<i>no ecf fror</i> idea that do idea that bi allosteric si	<i>m incorrect drug</i> bes not bind to (dopamine) nds to, MAO / enzyme ; ite / non-competitive inhibite	receptor ; ora or ;	max 1	 2 CREDIT other two do bind to dopamine receptor 3 IGNORE inhibits, MAO / enzyme (as given in the question) 4 ACCEPT "not a competitive inhibitor"
3	(b)	(ii)	(drug) occu without cau reduces eff	ipies / blocks / binds to, (do ising, action potential / resp f ect of dopamine / is a dop	ppamine) receptors ; ponse ; amine antagonist ;	2	CREDIT "without causing depolarisation" / AW DO NOT CREDIT "inhibits dopamine" or "reduces dopamine levels

G	Question		Expected Answers	Marks	Additional Guidance
3	(c) (i)		humans are, diploid / 2n ; chromosomes, are in pairs / homologous ; one, (copy / gene / allele), from each parent / on each chromosome of pair ;		DO NOT CREDIT ref to bivalents
3	(c)	(ii)	(gel) <u>electrophoresis</u> ;	2 max	
	<i>.</i>			1	
3	(d)	1	13 b-p deletion (has most serious consequences);		
		2	frameshift / alter reading frame ;		
		3	genetic code is triplet / read in groups of 3 bases;		
		4	alters all amino acids (coded for) after the mutation;		
		5	21 b-p deletion causes 7 amino acids to be lost :		
		6	substitution changes, one / no, amino acids;		 6 CREDIT could be a silent mutation / 1 b-p substitution may not have an effect
				3 max	
3	(e)	1	natural selection;		
		2 3 4	<u>selective advantage</u> ; (allele / behaviour) increases, survival / breeding / AW; (because) helped, find food / find new resources / make new tools / get mates;		 3 CREDIT increases reproductive success / AW 4 ACCEPT more promiscuous / AW
		5 6	allele passed on (to next generation) ; (allele / behaviour) increased in frequency over, generations / time ;	4 max	6 MUST HAVE time element
			Total	18	