Mark scheme - Biological Membranes

1 7	i	particles have (their own) kinetic energy (1) (movement) down concentration gradient (1)	2	ALLOW glucose for particles ALLOW from high(er) concentration to low(er) concentration
	ii	ATP	1	ALLOW adenosine triphosphate
	ii i	phospholipids act as a barrier (1) (glucose) molecules too large (1)	2	ALLOW (glucose) not soluble in phospholipid bilayer because of polar –OH groups for 2 marks
		Total	5	
				IGNORE stability for explanations
1 8	i	<i>property</i> hydrophobic (region / fatty acid tails) √ <i>explanation</i>	2 max	 <i>property</i> MUST be linked to its <i>explanation</i> <u>Examiner's Comments</u> Good responses identified region A as the tail of the phospholipid and correctly described its property as being hydrophobic. Credit was also
		(helps to) form		given to candidates who stated that the region could contain

		bilayer / separates two aqueous regions ✓ property (region) contains cholesterol ✓ explanation regulates (membrane) fluidity / AW√		cholesterol. It is important for candidates to look at diagrams carefully as there were a number of responses in which the candidates described region A as the whole phospholipid bilayer which could not be credited.
	ii	compartmentalisa tion OR form / surround , (named) organelles √ purpose of / need for , compartments / separation √ sites of , chemical reactions / electron carriers / photophosphoryl ation / chemiosmosis / oxidative phosphorylation √ provide attachment sites for , enzymes / pigments √ allow formation of concentration gradients √	2 max	e.g. separating organelles from cytoplasm e.g. form vesicles for transport is MP1 and MP2 ALLOW ETC for electron carriers ALLOW ETC for electron carriers ALLOW correctly named enzyme e.g. ATP synthase Examiner's Comments Many candidates gained credit for demonstrating knowledge of compartmentalisation as separating organelles and their contents from the cytoplasm. Weaker candidates gave confused statements which referenced the plasma or cell surface membranes rather than focus their response on the membranes within cells. Some good responses included reference to the specific roles of membrane- bound organelles such as lysosomes and vesicles.
		Total	4	
1 9		1 compartmentalisa tion / maintain different conditions from	2 max (AO2.1)	1 ALLOW keeps specific conditions needed in RER ALLOW controls what enters RER

		cell cytoplasm √ 2 separating proteins (synthesised) from cell cytoplasm √ 3 hold, ribosomes / enzymes, in place √ 4 AVP √–		ALLOW for attachment of ribosomes e.g. packaging proteins into transport vesicles / labelling proteins (on vesicle membranes)
		Total	2	
2 0	i	too large / not fat soluble	1	IGNORE 'no channels'
	ii	water / H ₂ O, and , lactase / enzyme	1	Mark the first two answers. If they are correct and any other word is written that is incorrect or contradicts the correct answer then 0 marks. DO NOT ALLOW H ₂ O with incorrect case or subscript IGNORE refs to pH, buffers, hydrocarbonate etc.
		Total	2	
2	i	ruled lines and a border and correct numbers in each column and absorbance and pH and mean in headings \checkmark pH in left hand column \checkmark units (%) in headings and not within table \checkmark means recorded to one decimal place \checkmark	4(AO3.3 3.4)	ALLOW means recorded as whole numbers Examiner's Comments Candidates were presented with some raw data in an inappropriate format and were asked to present the data in an appropriate table. Most candidates constructed a table with ruled lines but very few achieved full marks. The numbers that candidates were given were recorded to various, and often too many decimal places. Only a few candidates presented the numbers with consistent decimal places or to an appropriate number of decimal places, given the precision of the raw data. Most responses correctly put 'pH' in the left-hand column but many wrote 'pH' next to every value, rather than in a heading. It was also more common to see 'Average' in the final column heading, rather than the more precise 'Mean'.

	1				
					OCR support
		ii	(low pH) denatures / changes tertiary structure of , (membrane) proteins √ <u>therefore</u> membrane permeability (to pigment) is increased √	2 max(AO 2.1)	CREDIT only in the context of membrane protein structure having been changed
		ii	use pH buffer range with narrower intervals √ pH (buffers) , close to pH6 / between pH5 and pH6 / between pH5 and pH7 √	2(AO3.3)	ALLOW stated values (must be more than one) at interval of less than 1 ALLOW stated value of buffer within the range pH5 to pH7 'test more values between pH5 and pH6' = 2 marks. 'test at pH 6.5' = 1 mark (mp2)
			Total	8	
2 2	а	i	progesterone is) hydrophobic / fat soluble / lipid (molecule) ✓ (so) dissolves in / diffuses through / is not repelled by, the <u>phospholipid</u> (bilayer) / <u>hydrophobic</u> tails / <u>fatty acid</u> tails ✓	2	ACCEPT non-polar / uncharged IGNORE small IGNORE passes / moves, through / across DO NOT ACCEPT diffuses through gaps, in the phospholipid bilayer / between the phospholipids Examiner's Comments Most commonly candidates stated that the progesterone molecule was small enough to squeeze through gaps in the phospholipid bilayer, which did not gain any credit. However many did refer to the non-polar nature of the molecule, and even that it was lipid soluble, but often did not go on to explain that this meant that the progesterone would not be repelled by the hydrophobic tails of the bilayer and would be able to diffuse through. Some candidates failed to use the correct terminology, e.g. instead of
					Some candidates failed to use the correct terminology, e.g. instea

				'diffusing through' the molecules were 'moving or passing through the membrane' which was given in the question. Several candidates suggested that since progesterone was a hormone it required a channel protein to get through the membrane.
	ii	water / oxygen / carbon dioxide √	1	Mark the first answer only. If additional incorrect answer given, then 0 marks ACCEPT correct formulae DO NOT ACCEPT incorrect formulae ACCEPT (named) alcohol / (other) named steroid hormone / triglyceride / glucose / vitamins / proteins / enzymes / (named) amino acid / anabolic steroid(s) etc (all of which are molecules and can cross the membrane by a passive or active method) DO NOT ACCEPT elemental ions (e.g. K ⁺ / Na ⁺ / Ca ²⁺ etc) element (e.g. sodium / potassium etc) Examiner's Comments This question was well answered by most candidates. A varied range of examples of molecules that could cross the plasma membrane were seen. Water, oxygen and glucose were common answers, and several candidates continued the theme and stated a steroid hormone such as oestrogen.
b	i	channel / carrier / transport / cotransporter, proteins √	2	ACCEPT sodium potassium pump / Na ⁺ K ⁺ pump Examiner's Comments The vast majority of candidates answered this question with the correct responses of either 'channel' or 'carrier' protein, although a few either omitted reference to 'proteins' or simply described the proteins as being 'intrinsic'.
	ii	adenine √ ribose √	2	In any order IGNORE A DO NOT ACCEPT adenosine / other named base DO NOT ACCEPT deoxyribose / other named pentose ACCEPT FOR 1 MARK : nitrogenous base and pentose / 5C sugar Examiner's Comments

				Surprisingly few candidates gained full marks for this question, with many not knowing the components of ATP, as an example of a nucleotide. The majority of candidates correctly identified adenine as one of the molecules. Few candidates correctly identified ribose, preferring to call it a 5 carbon sugar or pentose. There were many 'adenosine' responses and also those candidates who got a single mark from the imprecise combination of '5 carbon sugar' with 'nitrogenous base'. There was a wide variety of other incorrect answers including other named organic bases, DNA, RNA, triglycerides, nitrogen, carbon, water, and glucose to name but a few.
		1 phospholipid 1 bilayer ✔		ACCEPT mark points 1 and 2 from a clearly labelled diagram
	с	hydrophilic / phosphate (containing), heads facing, outwards / towards external enviro 2 nment AND hydrophobic / fatty acid, tails facing , inwards / away from external environment √	2 max	 3 ACCEPT membrane components / molecules, free to move IGNORE fluid NOTE 'embedded proteins' is not enough without the random arrangement indicated IGNORE mosaic
		proteins /		Examiner's Comments
		phospholipids, 3 free to move (in membrane) ✓		Most candidates answered this question as a straightforward description of structure of the membrane rather than emphasising the 'fluid' and 'mosaic' aspects of the model. Candidate descriptions of the plasma membrane structure referred to the phospholipid bilayer but
		proteins, scattered / randomly arranged		did not often elaborate on the orientation of the phospholipid molecules within the bilayer. It was surprising to note the number of candidates who talked about hydrophobic heads and hydrophilic tails.
		/ spread 4 throughout / here and there (between the phospholipids) √		Few candidates talked about the components of the membrane, i.e. phospholipids or proteins, moving within the membrane, merely stating that the bilayer moves as a whole or 'is fluid'. The mosaic pattern created by the randomly scattered arrangement of the proteins was not well described, often only simple comments about the proteins being arranged in a mosaic pattern were offered.
		Total	8	
2 3		phosphate (on head), is hydrophilic /	3(AO2.1 2.5)	DO NOT CREDIT reference to incorrect bond, e.g. covalent

	bonds with water (molecules) √ (two) fatty acid tails are hydrophobic √ heads orientate towards water / tails orientate towards other fatty acids / tails orientate away from water , (so a bilayer forms)√		This point is for a description of why a bilayer forms and key terms are not required Examiner's Comments Most candidates were clearly familiar with aspects of membrane structure but may merely attempted to describe the structure of membranes rather than explaining why the structure of phospholipid molecules facilitates the formation of membranes.
	Total	3	
2 4	 phospholipid (molecules form) bilayer √ (forming) cisternae / network of membranes / flattened sacs √ covered (on outside) with ribosomes / AW √ membrane continuous with nuclear envelope √ 	3 max (AO2.1/ 1.1)	IGNORE fluid filled IGNORE contains / lined with / has a lot of, ribosomes
	Total	3	
2 5	initial / AW, glucose concentration (on both sides on the membrane) (1) volume of solution (1) length / diameter, of dialysis tubing (1) type / brand, of dialysis tubing (1)	2	

		ii	alpha glucose H above ring / OH below ring, on, carbon 1 / C1 ORA (1)	1	ALLOW a suitable annotated diagram
		ii i	(less reabsorption because) idea of fewer H ⁺ ions in PCT cells (1) less / no, co- transport / facilitated diffusion, of Na ⁺ ions, into cells / from lumen (1) less / no, active transport of Na ⁺ ions into, blood (1)	3	
			Total	6	
2 6		i	DNA / RNA / nucleic acid	1	
		ii	lower / reduce / make more negative	1	
		ii	two from strip is impervious to, water / solutions (1) forces water / solutions, to pass through, plasma / cell surface, membrane (1) phospholipid (bilayer), repels 3 / AW, ions / charged particles (1)	2	 IGNORE ref to suberin. The idea of charge / ion impermeability is wanted here. ALLOW answer in terms of ions / charged particles needing channels because phospholipid bilayer does not allow charged particles through.
			Total	4	
2 7	а	i	3 OR 2 √ 5 √ 2 √	3	Examiner's Comments Many candidates correctly selected the steps that relied upon

	ii	variety / type / age / colour, of beetroot \checkmark length / surface area / volume , of beetroot pieces \checkmark pieces taken from same part of beetroot / skin removed from beetroot \checkmark time taken to wash slices \checkmark volume (of samples) removed from solution \checkmark pH \checkmark use same colorimeter filter / same blank \checkmark	2 max	assumptions A and B . For assumption C many chose step 1 i.e. the stage when the beetroot is sliced rather than the correct response i.e. step 2. List Rule If both prompt lines used and more than one variable is on the line mark the first one on each line. If only one line used but there is more than one variable listed mark first two written. IGNORE temperature / time / concentration of ethanol ALLOW same beetroot / same species ALLOW same SA :V / mass IGNORE size of beetroot Examiner's Comments AO3 was being assessed in this part of the question. There were some excellent responses from candidates who understood the importance of specifying an appropriate measurement for the beetroot pieces; such as length, surface area or volume. There were also many good responses which included ideas such as time taken to wash the beetroot pieces and pH. Low attaining responses were often those in which candidates had suggested variables that had already been stated in the question as being controlled, such as the volume of ethanol or the time the beetroot was left in the ethanol.
b	i	x axis / concentration of ethanol , has no units \checkmark should be a line graph (as	3 max	List RuleIf all three prompt lines used and more than one criticism is on the line mark the first one on each line.If only one or two lines used but there is more than one criticism listed mark as continuous prose.ALLOW bar graph not appropriate for continuous dataExaminer's CommentsThis part of the question was generally well-answered with marking points accessible across the ability range.

			continuous data) \checkmark x axis / concentration (of ethanol) , has incorrect scale / 0.6 not included \checkmark no title \checkmark		
		ii	(so) can calculate a mean √ allows anomalies to be identified √ improves repeatability √ allows statistical test to be completed √	2 max	IGNORE average DO NOT ALLOW prevents anomalies IGNORE remove anomalies ALLOW reproducibility IGNORE reliability / validity / accuracy ALLOW can complete , standard deviation / t-test Examiner's Comments Candidates who gained full marks generally considered the potential to identify anomalies and calculate means. Marks were lost due to incorrect use of terms such as averages and validity or reference to removing or preventing anomalies. Few candidates used the correct terms, reproducibility or repeatability, in their responses.
			Total	10	
2 8	а	i	3.83 √√ √	3	Mark answer on answer line.If no answer on answer line then look for a clear 'final' answer in the working.Correct answer = 3 marks (indicated by 3 ticks) even if no working shown IGNORE minus signAWARD max 2 for correct answer not to 2dp or for 3 5/6If answer is incorrect AWARD 1 mark for (calculating difference between means): $0.44 - 0.21 = 0.23$ OR $0.21 - 0.44 = -0.23$ AWARD 1 mark for: $\sqrt{0.06^2 + 0.18^2}$ 10

	1		
			OR $\sqrt{0.0036} + \frac{0.0324}{10}$
			OR √0.00036 + 0.00324
			Examiner's Comments
			It was pleasing to see that the majority of candidates could calculate the value for the t test correctly, though as it was an unfamiliar test many ended up with a negative value which still gained credit. Those who gave an incorrect answer but who nevertheless showed working (which candidates should be strongly advised to always include in calculations), frequently picked up one or two marks for correct substitutions in the top or bottom parts of the equation. The most common mistake made by candidates was omitting to square the standard deviation in the given formula for calculating t .
	If answer to (d)(i)		If no answer for (d)(i), then allow 1 max for correctly stating when to, accept / reject, H₀
	<i>is greater than</i> 2.10 <i>then</i> rejected because value of t is higher than critical value √		ACCEPT H_0 is rejected because 3.83 is greater than 2.10
ii	(H_o is rejected so) the difference (between the means), is	2	ACCEPT H _o is accepted because 't value' is less than 2.10
	significant / not due to chance ✔		Examiner's Comments
	<i>If answer to (d)(i) is less than 2.10 (including negative numbers) then</i>		Candidates were often incorrect in their interpretation as to whether to accept or reject the null hypothesis by comparing the calculated value with the critical value. Some failed to realise that if they calculated a negative value of <i>t</i> it would be lower than the critical value and so should accept the null hypothesis. Those who did answer correctly often omitted to go on to comment on whether the difference was
	accepted because value of t is lower than critical value ✔		significant or not, or just stated whether the value of <i>t</i> meant that the 'results' were significant or not rather than refer to the 'difference' (between the means at the two temperature levels).

	(H₀ is accepted so) the difference (between the means), is not significant / is due to chance ✓		
			Award marks from any D or E statements but max 2 explain marks (E)
			<i>Put just a tick for D marks and green blob by the tick for E marks to ensure max 2 E marks awarded</i>
			IGNORE 'as temperature increases' unqualified
			E1 ACCEPT as clearly linked ideas
	E1 an increase in pigment (leaking out of cells) increases <u>absorbance</u> ✓		<i>For D2 and E2</i> if temperatures are quoted without 'low(er)' then °C must be used at least once <i>any range starting at 0 and ending between 20 and 40</i> °C
b	at low(er) temperature D2 there is, little / no, change in absorbance √ E2 membrane is, (still) intact / undamaged √	3 max	<i>For D3 and E3</i> if temperatures are quoted without 'high(er)' then °C must be used at least once <i>above 30/40</i> ° <i>C</i>
	at high(er) temperature		IGNORE enzymes denature
	D3 there is a (steep) increase		Examiner's Comments
	in <u>absorbance</u> ✓ E3 (pigment, leaves cells /		This question proved to be a good discriminator. Many candidates scored poorly on this question, mainly due to a lack of precision in describing the graph and a lack of understanding of the experimental technique involved. A general description of an increase in
	leaks out when)		absorbance as temperature increased was incorrect and failed to gain credit. This was very often all that lower ability candidates offered.

		membrane becomes more permeable / membrane is damaged / membrane disrupted / phospholipids melt / phospholipids move further apart / proteins denature (or described) √		Some candidates correctly gained credit for describing that there was no change in absorbance between 0 - 20°C, but fewer correctly noted that the absorbance did not start to increase until above 30°C. Few candidates understood that the membrane remained intact at these low temperatures. Students should be encouraged to describe data in as much detail as possible and at all relevant points, in order to gain full marks in such questions. Some candidates omitted to use full units (degrees 'C') for temperature quotes and thereby failed to gain credit for otherwise correct answers. Several candidates correctly described the increase in absorption at high temperatures and most went on to link this to an increase in membrane permeability or membrane disruption. However, few linked this to more betalain pigment leaking out and causing the increased absorbance. Marks for explanations were less common than for descriptions. There seemed to be misunderstanding of the term 'absorbance' at times with candidates believing that higher temperatures led to more pigment being 'absorbed by the cells'. These candidates may well have never used colorimeters. Candidates who had carried out this or a similar experiment were at an advantage.
		Total	8	
2 9	i	one from volume of ethanol not given (1) same onion / size of onion epidermis / position of epidermis in onion not stated (1)		
	ii	20–30% (1) lowest concentration must be between 20 and 30% (1)	2	<i>idea that</i> 100% blue nuclei is not reached at 20% but is reached at 30%
	ii i	<i>idea of</i> more accurate determination of permeability	1	
		Total	4	
3 0		because it is , charged / polar / hydrophilic √	2 max (AO2.1)	ALLOW repelled by phospholipid bilayer ALLOW hydrophobic centre / fatty acid tails for phospholipid bilayer IGNORE cell membrane

		(so) cannot pass through the phospholipid bilayer / will need correct transport proteins√ OR because it is (too) large √ (so) cannot pass through the phospholipid bilayer / will need correct transport proteins√	2	IGNORE cell membrane
3 1	i	Substance A 1 for (substance) A the, graph is a straight line / rate of uptake depends on concentration √ 2 (so substance) A is (absorbed by simple) diffusion √ Substance B 3 for (substance) B the curve, reaches a plateau / levels off √ 4 (so substance) B could be (absorbed by), facilitated diffusion / active transport √ 5 (because) if facilitated diffusion channels / carrier proteins, become saturated OR	4 max (AO3.1) (AO3.2)	ALLOW rate is (directly) proportional to concentration ALLOW as concentration increases rate increases DO NOT ALLOW facilitated diffusion ALLOW rate becomes constant DO NOT ALLOW rate slows IGNORE stops increasing ALLOW channels / carriers working at maximum capacity ALLOW transport proteins for either in MP5 DO NOT ALLOW channel proteins for active transport

			(because) if active transport carrier proteins /carriers, become saturated √		
			Substance A effect (uptake) unaffected / no change √		
			explanation (simple) diffusion, does not require ATP / is a passive process √		CHECK answer to (b)(i) ALLOW ECF if answer to part (i) suggests
			Substance B effect if active transport slower / little /		candidate thinks substance A is taken up by active transport and Substance B is taken up entirely by diffusion.
		ii	reduced / no (uptake) √ <i>explanation</i> active transport, requires ATP / is an active process √	max 4 (AO3.1) (AO2.5)	ALLOW does not require energy
			OR effect if facilitated diffusion (uptake) unaffected / no change √ explanation facilitated diffusion, does not require ATP / is a passive process √		ALLOW does not require energy
			Total	8	
3 2	а	i	repeats and calculate mean (at each temperature) √ use a biosensor (to measure glucose	1 max (AO3.4)	IGNORE different temperatures

		concentration) \checkmark (test at) more / smaller, temperature intervals \checkmark (test at) more / smaller / shorter, time intervals \checkmark		
	11	concentration of glucose (solution in bag / tubing) \checkmark volume of the glucose solution (in bag / tubing) \checkmark volume of (distilled) water (in beaker) \checkmark volume of sample, removed / tested \checkmark volume of Benedict's reagent used \checkmark length of, Visking tubing / artificial cell \checkmark time in water bath for Benedict's test \checkmark	1 max (AO3.4)	IGNORE amount for volume throughout ALLOW surface area to volume ratio of Visking tubing
b	i	hypothesis: as temperature increases, movement of glucose into the (distilled) water / concentration of glucose (in samples), increases √ scientific process: diffusion √	2 (AO3.4)	IGNORE null hypothesis ALLOW as temperature increases diffusion rate increases ALLOW particles, move faster / have more kinetic energy
	ii	as temperature increases, more glucose is found in the water / diffusion rate is faster √	2 (AO3.1) (AO3.2)	ECF from wrong hypothesis in 5 (b)(i). ALLOW 1 max for no when supported with a reference to the anomaly at 60 seconds at 20°C

			result for 60 seconds at 20oC, anomalous / does not support √		
	с		use one / control, temperature √ use two / more, layers of, Visking / dialysis, tubing √	2 (AO3.4)	CREDIT keep temperature, the same / constant IGNORE make Visking tubing thicker ALLOW fold / layer, Visking tubing Examiner's Comments This question also provide a model for testing transferable skills. Doing the paper and going through the mark scheme could be followed up by applying the same questions and skills to new microscope drawings and descriptions of experiments.
			Total	8	
3 3	а		detect the presence of acid / H ⁺ (1) measure end- point / dependent variable (1)	1	
	Þ	i	surface area to volume ratio on x-axis and time on y-axis (1) plotted points occupy at least half of available area and linear scale on both axes and line of best fit drawn (1) axes labelled time (min) and surface area to volume ratio / AW (1) all points plotted correctly (to +/- half a 2 mm grid square) (1)	4	DO NOT ALLOW if units given for x-axis ALLOW ecf for correctly plotted points on incorrectly-scaled graph

	ï	time taken for diffusion (to centre of cube), increases as surface area to volume ratio decreases, ORA	1	Answer must mention surface area to volume ratio DO NOT ALLOW if colour change is discussed in place of diffusion IGNORE rate ALLOW a description consistent with the graph the candidate has drawn ALLOW answer in the range of 0.40 – 0.48 depending on candidate's
	ii i	0.44	1	ALLOW answer in the range of 0.40 – 0.46 depending on candidate's plotted graph Answer must be reported to 2 decimal places
	i v	test cubes of (known) length between 10 and 20 mm	1	
с		0.35 / 0.347 (1) (1) mm min ⁻¹	3	ALLOW 0.69 / 0.694 for 1 mark ALLOW 0.3 or 0.3472 for 1 mark ALLOW mm/min
d	i	cube A , because time for test 2 different from others (1) use of processed figures to support (1)	2	ALLOW calculated rates for cube A - E ALLOW calculated range compared with that of cubes B - E
	ï	Limitation inconsistency in surface area (1) cube A (1) Because It is the smallest cube so small error in cutting will have proportionately larger effect in a small cube / idea that error is a bigger proportion of total time (1) Limitation using human eye and judgement to determine end point (1) cube E (1)	3	ALLOW mark only if one of the other two marks is awarded

			<i>Because</i> largest cube so harder to see through 2cm of jelly / AW (1)		
	e		idea of involvement of cytoskeleton / vesicles (1)	1	IGNORE reference to different diffusion resistance
			Total	17	
3 4	а	i	-28.77 is incorrect -19.19 √√√	3	IGNORE units (would not be written into table) 2 marks maximum if answer is not to 2 d.p. (so it is in the same format as the table) If incorrect, ALLOW 1 mark for evidence of: $\frac{2.78 - 3.44}{2.78} \times 100$
		ii	(any value from) 1.1 - 1.5 (inclusive) mol $dm^{-3} \checkmark$	1	DO NOT ALLOW if units not included ALLOW any range within this range (inclusive)
		ii i	water potential \checkmark	1	
	Ь		<pre>line graph √ (because) both variables are continuous √ concentration on x / horizontal axis, because it is independent variable AND (%) change in mass on y / vertical axis, because it is dependent</pre>	3 max	ALLOW scatter graph / scattergram

	verieble /		
	variable √		
	separate line		
	plotted for each		
	vegetable (with key) √		
	improvement:		
	at least, two		
	repeats / three		
	replicates √		
	explanation:		
	allows for		
	(named)		
	statistical test /		
	identify anomalies		
	/ improves		
	repeatability √		
	improvement:		
	more intermediate		
	values (of		
	sucrose solution)		
	\checkmark		
С		6	
	explanation:		ALLOW reproducibility
	allows trend to be		
	identified more		
	clearly / allows		
	solute concentration of		ALLOW stated examples of intermediate values
	cells to be		
	identified more		
	accurately \checkmark		
	improvement:		
	keep pieces (of		
	vegetable) the		
	same size \checkmark		
	explanation:		
	reduces effect of		

			surface area (on osmosis) √		
			Total	14	
3 5	а		table with correct results entered ✓ LH column records letter of rod OR treatment and liquid / described ✓ RH column records final length ✓ correct headings (LH & RH column) with units (cm or mm) ✓	max 3	DO NOT ALLOW if number of decimal points wrong IGNORE column with % change / change in length to right DO NOT ALLOW if units in body of table. IGNORE graphical presentation Examiner's Comments This question may have confused some candidates who felt that the results had already been recorded in an appropriate format. Most candidates displayed the results in an acceptable table format, correctly placing the independent variable (potato rod) in the left hand column and dependent variable (final length) in the right hand column. A few drew row tables and hybrid row/column tables were seen. Common errors included not recording the results to the correct number of decimal points and recording processed results (change in length) rather than the original results. Results should be recorded in a table according to the guidelines found in the Practical skills handbook. Some candidates used a graphical presentation but this approach was not considered adequate. OCR support OCR support OCR support includes the Practical skills handbook and the student guidance sheet 'Graphs, tables and drawings: student checklist'. https://www.ocr.org.uk/Images/346170-graphs-tables-and-drawings- student-checklists.doc https:/ocr.org.uk/Images/294468-biology-practical-skills-handbook.pdf
	b	i	boiling, damages / AW, plasma / cell surface, membrane √ (therefore) no, osmosis / (net) movement of	2	Examples of AW: disrupts / destroys / melts / denatures proteins in Note: needs a comment about both A & E for this mark

	I	1
water, c but wate out of E OR AW √	er moves	
ethanol phosphi (bilayer) ii (therefo osmosis movemi water in) √ re) no, s / (net) 2	Note: needs a comment about both D & F for this mark Examiner's Comments part (i) & (ii) were, the least well answered questions in the examination. It appeared that few candidates had carried out this experiment or similar experiments investigating the effect of temperature on cell surface membranes. Lower ability candidates simply repeated the treatments or described the results with little or no attempt at an explanation. Those who did attempt an explanation often believed that water moved in one direction during the boiling process or while being soaked in ethanol only to reverse that direction of movement when placed in sucrose solution or distilled water. Few candidates discussed the effect of temperature or ethanol on membrane structure and the explanation was often incorrect; did not include the correct direction of water movement. Exemplar 1 Mscold_pinstitut_institut_institut

					OCR support Practical work should be an integral part of the study of Biology. The practicals provided by OCR to support the practical endorsement include Practical Activity Group (PAG) 5 in which the first practical investigates membrane permeability. PAG 5 investigates aspects of osmosis and membrane permeability. These practicals include extension questions that can be used to help prepare students for questions of this type in the examination. PAG activities are available on OCR interchange: https:/interchange.ocr.org.uk/Modules/ControlledMaterials/ControlledMate
					Examiner's Comments
	с		use more, accurate / precise apparatus / described OR	1	This question was not well answered as many candidates did not understand the word 'uncertainty'. Few candidates knew that to reduce uncertainty, you needed to use more precise or accurate apparatus. The most frequent answer referred to carrying out repeats and working out a mean, which gained no credit. Others suggested measuring mass instead of length or improving the accuracy of measuring volumes. Improving resolution and using statistics were also suggested by some candidates.
			use calipers / micrometer √		OCR support
					The definitions of terms used in measurement can be found in the OCR practical skills handbook, Appendix 4:
					https:/ocr.org.uk/Images/294468-biology-practical-skills-handbook.pdf
			Total	8	
3 6	а	i	diffusion / net movement, of water across a, partially / selectively, permeable membrane √	2 (AO 1.2)	IGNORE semi ALLOW from a high water potential to a more negative Ψ IGNORE water concentration IGNORE along Examiner's Comments
			down a, <u>water</u> <u>potential</u> / <u>Ψ,</u> gradient √		Only a few responses achieved both available marks in this knowledge of isolation question. Many candidates gained 1 mark for correct reference to a water potential gradient, although candidates

				who misunderstood the meaning of gradient, often wrote 'from a high water potential gradient to a low water potential gradient', were not awarded the mark. Only a few candidates referred to diffusion or net movement. It is worth noting that use of the term 'water concentration' is not credited at A Level. References to a semi permeable, or simply 'cell' membrane, were also not credited. Examiner's Comments A fair amount of candidates scored at least 1 mark in this question. Most candidates did not fully appreciate the meaning of 'support' and appeared to interpret 'support' as 'benefit'. Most responses focussed only a small part of their answer on cell turgor, usually gaining a mark
	ii	water enters vacuole √ <u>pressure</u> against cell wall √ turgor (pressure) √ turgid cell <u>s</u> (support plant) √	3 max (AO 1.2)	for reference to turgid cells, but many described the whole plant, or the xylem, as being turgid. Response that limited the turgidity to a single cell were also not credited as the question was about supporting plants. A lot of candidates referenced to photosynthesis and transport but were not credited. Exemplar 1
				This response has interpreted the question correctly, focussing on the role of osmosis in support and it is awarded the first marking point by the clear implication that water has entered the vacuole. However, it does not mention turgor and, while there is the idea of pressure against the cell wall, the word 'pressure' is not used. The key word 'turgid' has been used but 'it' appears to refer to the cell wall rather than to plant cells in general. Therefore, the answer scored only 1 mark.
b	i	FIRST CHECK ON ANSWER LINE If answer = 6.25 or 6.3 award 2 marks √√ If answer is incorrect ALLOW 1 mark max for any one of	2 (AO 2.8)	Examiner's Comments Only a few candidates knew exactly what to do here and gained both marks. A smaller number of candidates carried out a correct calculation but they only considered uncertainty at one end, so scored 1 mark. A number of candidates used an inappropriate number of significant figures and were therefore didn't score full marks for the calculation.
		any one of correct answer to 1 or >3 s.f.		OCR support

		3.125 ± 0.005 0.0625 or 0.063 (2 x 0.5) / (26.5 – 10.5) x 100 √		The 'Maths for Biology' website offers support on calculating uncertainties as well as the correct use of significant figures: https:/www.ocr.org.uk/subjects/biology/maths-for-biology/handling- data/
	ii	Y / solution outside bag, has higher, water potential / Ψ (than X) √ ora X / solution inside bag, has higher, solute / AW, concentration / potential (than Y) √ ora	2 (AO 3.1)	Must be comparative statements IGNORE water concentration IGNORE hypertonic / hypotonic ALLOW X has more sugar molecules Examiner's Comments Many candidates scored one mark for getting the water potentials the right way round. However, only a few candidates expanded their answer. Most candidates did address the issue of solute concentration but often did not express this with sufficient precision. For example, 'solution X is more concentrated' was not awarded a mark. A few candidates explained the processes that were happening, rather than answering the question being asked, which was to draw conclusions.
С	i	different (starting) masses (of plant pieces) √ allows comparison (between plant pieces of different mass) √	2 (AO 3.4)	ALLOW different weights IGNORE to remove effect of starting mass Examiner's Comments A number of candidates gained both marks here and some well- expressed answers were seen. A minority of candidates referred, incorrectly, to a percentage being more precise, accurate or reliable. OCR support Appendix 4 of the Practical Skills Handbook, provides information on terms used in measurement and conventions for recording and processing experimental measurements. This is in line with the 'The Language of measurement' booklet: https://www.ocr.org.uk/Images/294468-biology-practical-skills- handbook.pdf
	ii	inadequate drying √ (so) more mass / heavier (than other pieces) √	2 max (AO 3.4)	IGNORE references to measuring errors CREDIT only 1 limitation and corresponding explanation Examiner's Comments Most candidates identified the correct practical error. However, having identified a reasonable error, usually inadequate drying, most were

			[
		piece cut from different (part of) potato \checkmark (so) cells might have different water potential (at start) \checkmark		unable to relate this to the data in the table and describe a potato mass being recorded as heavier than it really was. Most responses discussed errors such as reading the mass incorrectly or using the wrong solution, which didn't score any marks. Candidates are advised that answers to practical questions that cite avoidable human error are not likely to attract marks.
	;; ;	 courgette / carrot or courgette √ 0(%) mass change / <i>idea of</i> intercept, between 0.3 and 0.5 (mol dm⁻³) √ (courgette associated with) highest concentratio n at which there is no mass change √ (courgette has) highest mass gain at 0 mol dm⁻³ / least mass loss at 0.7 mol dm⁻³ √ change / AW, at, 0.3 (mol dm⁻³) higher than carrot / 0.5 (mol dm⁻³) lower than carrot √ AVP calculated linear extrapolation (0.421) √ 	3 max (AO 3.1) (AO 3.2)	2 ALLOW (isotonic) sucrose concentration is between 0.3 and 0.5 (mol dm ⁻³) 4 ALLOW units anywhere in answer 5 ALLOW 0 change is closer to 0.5 than carrot 5 ALLOW 0 change is closer to 0.5 than carrot 5 automatical and the second
		Total	0	
3 7	i		max 2	Mark first two answers only, ignoring the numbered sections IGNORE mass / balance used / soak time / repeats IGNORE a list of variables unqualified

1 discs same, size / thickness / surface area / surface area to volume ratio / diameter √		 ACCEPT same cork borer used ACCEPT 'pieces of potato' etc. for 'discs' ACCEPT 'length' as equivalent to 'diameter' IGNORE same shape/similar size etc
		4 e.g. blotting / shaking
2 same (variety / part, of) potato ✓		
3 no skin on potato √		
4 <i>ref to</i> removing excess water		7 ACCEPT in context of room / environment / solution
before (re)weighing ✓		Examiner's Comments
5 same, number / amount, of discs (in each solution)		This question was relatively well answered but many candidates stated soak time as a factor, despite the question specifying four hours. Some candidates correctly named the variable but failed to keep it the same. A significant number of students did not appreciate
 ✓ 6 same volume (sucrose) solution ✓ 		that the question referred to the validity of the results and gave responses relating to ensuring the accuracy or reliability of results, e.g. using suitable measuring equipment for the volumes or to doing repeats. Candidates did not always use the term volume rather than 'amount', or refer to the discs rather than just the potato tuber.
7 same temperature √		
8 cover the tubes √		
		ACCEPT Ψ for water potential throughout IGNORE ref to solute potential / isontonic
ii <i>idea that</i> no change of mass occurs when the water potential of (sucrose) solution = water potential of potato (tissue) ✓	max 3	2 correct units must be stated once ACCEPT 'between 0.2 and 0.3 mol dm ^{-3} the water potential of the solution and the potato will be the same'
2 ref. to no change in mass		3 x and y axes interchangeable When an axis has been identified it can be referred to by letter later.

(of potato)	Needs some ref to the mass change being 0.
between 0.2 and	If the change in mass axis has previously been identified, then ref to
0.3 mol dm⁻³	that axis value being 0 is equivalent to no change in mass
	e.g. 'Should draw a graph of sucrose concentration on the x axis and
	change in mass of potato discs on the y axis. The point where the line
	of best fit crosses the x axis (when the y axis = 0) is the concentration
3 plot graph of	of sucrose in the potato discs.' will get the mark
concentration of,	
sucrose / solution,	'Draw a graph with change in mass of potato discs on the y axis and
against (%)	concentration of sucrose solution on the x axis and draw a line of best
change in mass	fit. Where the line intercepts the x axis is where the change in mass of
and	potato discs is zero.' will get the mark
find which	
(sucrose)	3 correct units must be stated once
concentration	
gives no change	Examiner's Comments
in mass of potato	
	Most candidates did not read the question carefully enough and just
	described why the discs gained or lost mass in the various sucrose
	solutions. Typically they gave statements such as 'when the increase
	in mass is high then the water potential of the solution is higher than in
	the potato and when mass is lost the water potential of the solution is
	lower'. There was no indication they understood that the water
	potential of the potato tissue could be quantified from the results or
	the significance of the sucrose concentration where no mass change
	occurred. Several candidates appreciated that the mass difference
	changed from positive to negative between two stated sucrose
	solution concentrations, but did not develop the idea further.
	Candidates who, presumably, had done this as a practical exercise or
	had analysed similar data, knew that a graph of the results would yield
	an estimate but most of these said that the water potential could be
	obtained directly from the point where the line of best fit crossed the
OR	zero mass value (rather than the equivalent sucrose concentration).
carry out the	
experiment again	
with more	
(sucrose)	
concentration	
intervals between	
0.2 and 0.3 mol	
dm ⁻³ ✓	
4 look up the	
water potential of	
the (sucrose)	
solution (e.g. on	

	calibration curve or table), of that concentration / of the concentration which gives no mass change √		
	Total	5	