4	E: 4.4 I				
1	Fig. 4.1 shows a	representation of	part of a carbon	ydrate molecule	called agarose.

One of the subunits of agarose is a sugar called galactose.

	Identify the type of carbohydrate molecule of example.	of which the ca	arbohydrate a	igarose is an
	Starch contains a carbohydrate called amylose	e. Amylose does	s not contain	galactose.
	Using the information in Fig. 4.1, identify structure between agarose and amylose.	similarity and		difference in
	similarity			
	difference			
	rose forms part of a more complex carbohydra dium for bacteria. Bacteria cannot break down th			d as a growth
Sug	gest why bacteria cannot break down agarose.			

A student wished to demonstrate experimentally that bacteria cannot break down agarose.

The student used a culture of *E.coli* bacteria which had been grown in a solution containing starch.

Two tubes, **A** and **B**, were set up as follows:

Tube A: contained 0.1 cm³ of the *E.coli* culture and 5 cm³ of a nutrient solution in which agarose was the only carbohydrate.

Tube **B**: contained 5 cm³ of a nutrient solution in which agarose was the only carbohydrate.

Both tubes were incubated at 30 °C for 2 hours.

A sample from each tube was then tested for the presence of reducing sugar.

The results are shown in Table 4.1.

source of sample	conclusion from test
tube A	very small amount of reducing sugar present
tube B	no reducing sugar present

Explain the purpose of tube B .
The student wrote the following conclusion:
My experiment showed that bacteria must be able to break down agarose. This is because reducing sugar was present in tube $m{A}$.
Suggest an alternative explanation for the presence of reducing sugar in tube A that is consistent with the student's conclusion.

Suggest	ways in which the	of the experiment could be improved.
1		
2		
The student of reducing s	did have access to	a colorimeter when testing solutions for the presence
		ry out a chemical test for reducing sugar suggest of reducing sugar in the sample from tube A .

sugar.	
Describe how the test for reducing su	gar could be modified to investigate this hypothesis

Another student suggested that the agarose may have been broken down to a

The use of microscopy has greatly enhanced our knowledge of cell structure.

(a)	Explain the difference between mag	gnification and resolution.	
			. [2
(b)	State the resolution that can be ach	nieved by each of the following types of microscope.	
	light microscope		
	transmission electron microscope		[2

(c) Fig. 4.1 is an electron micrograph showing part of a nucleus.

Fig. 4.1

A student stated that Fig. 4.1 was taken using a scanning electron microscope.
What evidence supports the student's statement?
[1]
On Fig. 4.1, the nuclear pore complex, labelled A , is 3mm wide.
Calculate the actual diameter of the pore, in nanometres.
Answer =nm [2]
State the function of the nuclear pores.
[1]
tate two features of a eukaryotic cell, other than nuclear pores, that would not be visible
sing medium power of a light microscope.
[2]
[Total: 10]

(a) F	Fig. 5.1 is provided for you on the insert .	
(i)	State two features of the cell shown in Fig. 5.1 that indicate it is eukaryotic.	
		[2]
(ii)	The line A–B on Fig. 5.1 represents 20 μm.	
	Calculate the magnification of the cell shown in Fig. 5.1.	
	Show your working.	
	Answer =	x [2]
(iii)	Microtubules and microfilaments are part of the cytoskeleton.	
	Suggest two roles of the cytoskeleton in the type of cell shown in Fig. 5.1.	
		[2]
(b) The	e cells of a multicellular organism are usually specialised to perform a particular fund	ction.
(i)	Name the process in which a cell becomes specialised.	
		[1]

11)	the blood.
	Describe how the ultrastructure of a neutrophil is specialised to enable it to perform this function.
	In your answer, you should use appropriate technical terms, spelt correctly.
	[4]
	[Total: 11]

4 (a) Fig. 1.1 is a diagram of a bacterium as seen under an electron microscope.

Fig. 1.1

	(i)	Name the structures labelled A and B .
		A
		В[2]
	(ii)	It has been suggested that the mesosome has the same role as mitochondria in eukaryotic cells.
		Suggest the role of the mesosome in prokaryotic cells, such as bacteria.
		[1]
	(iii)	Eukaryotic cells, such as <i>Euglena</i> , contain membrane-bound organelles. Each organelle has a specific function in the cell.
		State the process that is carried out in each of the organelles listed below.
		ribosome
		chloroplast[2]
(b)	-	olain why a single-celled organism, such as <i>Euglena</i> , does not need a specialised area to by out gaseous exchange.
		[2]
		• •

(c) The mammalian gas exchange system contains a variety of types of cells and tissues.

Complete Table 1.1, stating the function of each of the cells and tissues. The first row has been completed for you.

Table 1.1

cell / tissue	function
squamous epithelium	to provide a thin surface for a short diffusion distance
elastic tissue	
ciliated epithelium	
goblet cells	
smooth muscle	

[4]

[Total: 11]

Fig. 4.1 shows diagrams of two different types of cells, \boldsymbol{X} and \boldsymbol{Y} .

The cells are **not** drawn to scale.

Fig. 4.1

(a)	(i)	State, using only the information in Fig. 4.1 , two differences between plant cells and animal cells.
		1
		2
		[2]
	(ii)	Cell Y is a guard cell.
		State, using only the information in Fig. 4.1 , one adaptation of this cell and explain how the adaptation allows the cell to carry out its function.
		adaptation
		explanation

(b) Fig. 4.2 shows drawings of the six chromosomes inside an animal cell viewed during late prophase of mitosis.

Fig. 4.2

- (i) Identify **one pair** of *homologous chromosomes* in Fig. 4.2 by drawing around each chromosome in the pair **on the diagram**. [1]
- (ii) The nucleus of a sperm cell is produced by meiosis.

Draw a diagram in the space below to represent the chromosomes that are present in the nucleus of a sperm cell from **the same animal**.

[2]

[Total: 7]