Membranes, Protein, DNA and Gene Expression - Mark Scheme ### Q1. | Question
number | Answer | Mark | |--------------------|--|------| | (a)(i) | D the hydrophobic tails move away from the aqueous (water) environment | (1) | | Question
number | Answer | Mark | |--------------------|--------|------| | (a)(ii) | B Q | (1) | | Question
number | Answer | Mark | |--------------------|---|------| | (b) | diffusion of water molecules down a water potential gradient through a
partially permeable membrane | (1) | | Question
number | Answer | Additional guidance | Mark | |--------------------|---|--|------| | (c) | An answer that includes the following points: similarities: both used to transport large particles / large quantities of material (1) | | (3) | | | both involve (phospholipid) membrane vesicles (1) difference: | | | | | exocytosis is export and endocytosis is import of material (1) | Accept a description of both processes | | | Question
number | Answer | Mark | |--------------------|--|------| | (d) | An explanation that includes the following points: | (3) | | | oxygen molecule is small (1) | | | | oxygen molecule is non-polar (1) | | | | (it can, therefore) pass between gaps {in cell membrane / between hydrophobic tails} (1) | | | Question
number | Answer | Additional guidance | Mark | |--------------------|--|---|------| | (a) | A calculation in which: • actual height of | Example of calculation:
$4.5 \div 0.02 = 225 / 230 / 235 \text{ (cm)}$ | | | | how many times taller
the elephant is than the
mouse | 75 / 76.67 / 76.7 / 77 / 78 / 78.3 / 78.33 IGNORE units | (2) | | number | | Additional guidance | | |--------|--|---|-----| | (b) | A description that includes the following points: • attachment of lungs to {chest cavity / diaphragm} {increases volume / decreases pressure} | ACCEPT to
{take in / hold}
large volume of
air | | | | (1) Any two from: <u>alveoli</u> provide a large surface area for faster diffusion (1) | ACCEPT thin walls | (3) | | alveoli formed from {one cell layer / flattened / squamous} epithelial cells for small diffusion distance (1) | ACCEPT large network of capillaries | | |---|-------------------------------------|--| | concentration gradient maintained by
{ventilation / blood flow / good blood
supply} (1) | | | | Question | Answer | Mark | |----------|--|------| | number | | | | * (c) | Answers will be credited according to candidate's deployment of knowledge and understanding of the material in relation to the qualities and skills outlined in the generic mark scheme. The indicative content below is not prescriptive and candidates are not required to include all the material indicated as relevant. Additional content included in the response must be scientific and relevant. | (6) | | | Indicative content | | | | oxygen dissociation curve for the mouse is shifted to
the right | | | | mouse haemoglobin has a lower affinity for oxygen
than the elephant haemoglobin | | | | therefore haemoglobin can supply oxygen to the
tissues at lower pp of oxygen | | | | because the rate of respiration in the mouse is higher | | | | a mouse has a higher mass-specific metabolic rate
than the elephant | | | | because the mouse loses more body heat | | | | because it has a larger surface area to volume ratio | | | | because the mouse is more active | | | | because it has to escape predators | | | | the rate of respiration of the mouse is going to be | | | | greater than the elephant | | | | therefore pp of oxygen in mouse tissues will be lower | | | | therefore haemoglobin needs to be releasing oxygen | | | | when blood cannot supply oxygen at a fast enough rate | | | Level | Marks | | |-------|-------|---| | | | | | | | | | | 0 | No awardable content. | | 1 | 1-2 | An explanation may be attempted but with limited interpretation or analysis of the scientific information and with a focus on mainly just one piece of scientific information. | | | | The explanation will contain basic information, with some attempt made to link knowledge and understanding to the given context. | | 2 | 3-4 | An explanation will be given, with occasional evidence of analysis, interpretation and/or evaluation of both pieces of scientific information. | | | | The explanation shows some linkages and lines of scientific reasoning with some structure. | | 3 | 5-6 | An explanation is made that is supported throughout by sustained application of relevant evidence of analysis, interpretation and/or evaluation of both pieces of scientific information. | | | | The explanation shows a well-developed and sustained line of scientific reasoning, which is clear and logically structured. | ## Q3. | Question number | Answer | Additional guidance | Mark | |-----------------|---|---|------| | (a)(i) | Substitute values correctly into the equation (1) | Example of calculation $V = 4 \times w \times 50 \times 50 \times 50$ 3 | | | | correct answer with
units (1) | volume = 523 599 / 5.2 x10 ⁵ nm ³ CE applies if 100 has been used in calculation instead of 50 ALLOW correct conversions with different units | | | | | No working: e.g. 523 599 / 5.2 x10 ⁵ nm ³ / 523 333 nm ³ gains 2 marks e. g. 4 186 667 / 4.2 x10 ⁶ nm ³ gains 1 mark | (2) | | Question number | Answer | Additional guidance | Mark | |-----------------|--|--|------| | (a)(ii) | An explanation that includes the following points: • because {hydrophobic / non-polar} tails {move away from / repelled by} the {aqueous environment / water} (1) | | | | | {hydrophilic / polar} heads
{interact with / associate /
dissolve in} the {aqueous
environment / water} (1) | NB if no other marks
awarded, allow
'hydrophilic heads
face water and
hydrophobic tails
face away from
water' for 1 mark | (2) | | Question
number | Answer | Mark | |--------------------|--|------| | (b)(i) | The only correct answer is B. | | | | A is incorrect because the liposome has no protein and cannot generate ATP. | | | | C is incorrect because liposomes cannot take up molecules by endocytosis. | (1) | | | D is incorrect because water only moves by osmosis. | | | Question
number | Answer | Additional guidance | Mark | |--------------------|--|-------------------------------|------| | (b)(ii) | A description that includes the following points: | ACCEPT converse
throughout | | | | increase in temperature increases
membrane permeability (1) | | | | | increase in cholesterol decreases
membrane permeability (1) | | (3) | | | cholesterol has a greater effect
on membrane permeability at
higher temperatures (1) | | | | Question
number | Answer | Additional guidance | Mark | |--------------------|--|--|------| | (b)(iii) | An explanation that includes the following points: • because an increase in temperature increases the movement of phospholipids (1) • because the cholesterol decreases fluidity (of the membrane) (1) | ACCEPT fills the gaps between the phospholipid tails / acts as a barrier / reduces movement of phospholipids | (2) | | Question | Answer | Additional guidance | Mark | |----------|--|--|------| | number | | | | | (a) | An answer that includes the following points: two mononucleotides shown (joined in one strand only) (1) | IGNORE labels including second strand if drawn / additional mononucleotides / one mononucleotide | | | | each base bonded to C1 of
pentose sugar (1) | including second strand if drawn / additional mononucleotides | | | | phosphate group bonded
to C3 of one sugar and C5
of the other sugar (1) | example of diagram | | | | | | (3) | | Question
number | Answer | Additional guidance | Mark | |--------------------|-------------|---------------------|------| | (b)(i) | | | (1) | | | • 0.38 (nm) | ACCEPT 0.4 | | | Question
number | Answer | Additional guidance | Mark | |--------------------|--|--|------| | (b)(ii) | An explanation that includes the following points: R (or Q) because it forms two hydrogen bonds (1) | ACCEPT not bases P
and S because they
form 3 hydrogen bonds | | | | R (or S) because it is {large / double-ring / purine} base (1) | ACCEPT not bases P and Q because they are {small / single-ring / pyrimidine} | | | | | ACCEPT Q for correct
reason or S for correct
reason if neither mark
points
awarded | (2) | | Question
number | Answer | Additional guidance | Mark | |--------------------|--|--------------------------|------| | (c) | An answer that includes at least one | DO NOT PIECE
TOGETHER | | | | similarity and one difference: | | | | | similarities: | | | | | both contain {RNA
(mono)nucleotides / ribose
sugar / uracil (and adenine,
cytosine and guanine) /
phosphodiester bonds} (1) | ACCEPT letters for bases | | | | both are single stranded (1) differences: | | | | | mRNA is a straight chain and
tRNA is {folded / clover-leaf
shaped} / mRNA does not
have hydrogen bonds and
tRNA does (1) | | | | | {size / length} of mRNA is
variable and the {size /
length} of tRNA is constant
(1) | | | | | mRNA has codons and tRNA
has {anticodons / amino
acid binding sites} (1) | | (4) | ## Q5. | Question
number | Answer | Additional guidance | Mark | |--------------------|--------|---------------------|------| | (a)(i) | | | (1) | | | • 9:1 | ACCEPT 6:1/5:1 | | | Question
number | Answer | Additional guidance | Mark | |--------------------|---|---|------| | (a)(ii) | A description that includes the following points: will not have any effect on the total membrane phospholipids (1) the inner layer will have a relatively higher content of the other phospholipids / the outer layer will have a relatively lower content of the other phospholipids (1) | ACCEPT increase
phospholipid content in
outer layer and
decrease content in
inner layer | (2) | | Question
number | Answer | Additional guidance | Mark | |--------------------|--|---|------| | (a)(iii) | A description that includes the following points: | | | | | will alter membrane {properties
/ permeability / fluidity} (1) | | | | | so that platelets will release
thromboplastin (1) | | | | | thromboplastin is {an enzyme /
a catalyst} (1) | | | | | that converts prothrombin into
thrombin (1) | NB thromboplastin catalyses prothrombin into thrombin = 2 marks | (4) | | Question | Answer | Additional guidance | Mark | |----------|---|---|------| | number | | | | | (b) | An explanation that includes the following points: | | | | | thrombin is an <u>enzyme</u> (1) | | | | | because the inhibitor will change
the shape of the active site (of
thrombin) (1) | ACCEPT inhibitor blocks the active site / fewer active sits available | | | | therefore thrombin cannot bind to
fibrinogen (1) | ACCEPT {less / no}
thrombin to bind to
fibrinogen / fewer
collisions / fewer
enzyme substrate
complexes formed | | | | therefore {less / no} fibrinogen will
be converted into fibrin (1) | ACCEPT slower conversion | | | | therefore there is {less / no} {mesh /
fibrin / fibres} to trap
{blood cells / platelets} (1) | | (4) | | Question | Answer | Marks | |----------|--|-------| | number | | | | (a) | An explanation that includes the following points: | (3) | | | many small alveoli to provide a large surface area to increase the rate of diffusion (1) | | | | thin epithelium to increase rate of diffusion (1) | | | | good blood supply to maintain diffusion gradient (1) | | | Question
number | Answer | | |--------------------|---------------------|-----| | (b)(i) | a version of a gene | (1) | | Question
number | Answer | Mark | |--------------------|---|------| | (b)(ii) | An explanation that includes the following points: | (4) | | | there will be a different sequence of R groups (1) | | | | therefore the CFTR protein has a different tertiary structure (1) | | | | because of different {types of / position of} bonds between the R groups (1) | | | | therefore the movement of chloride ions through the cell membrane is
affected (1) | | | Question number | Answer | | |-----------------|--|--| | (b)(iii) | An explanation that includes any four of the following points: | | | | produces very thick, sticky mucus (1) | | | | because of reduced water transport from cells (1) | | | | cilia lining airways are unable to move mucus (1) | | | | therefore microorganisms get trapped in the mucus (1) | | | | mucus provides suitable growth conditions for growth of microorganisms (1) | | Q7. | Question
number | Answer | Mark | |--------------------|--|------| | (a) | sequence of bases of DNA that code for a polypeptide | (1) | | Question
number | Answer | Mark | |--------------------|--|------| | (b) | A description that includes the following points: complementary bases / named pair of complementary bases (1) it enables the formation of {two hydrogen bonds between adenine and thymine / three hydrogen bonds between cytosine and guanine} (1) | (2) | | Question number | Answer Addition | | Mark | |-----------------|---|---|------| | (c) | A explanation that includes the following points: enough codons needed for 20 different amino acids (1) four bases are used in the genetic code (1) (triplet code) provides {enough / 43 / 64} possible codons (1) | Allow descriptions of single and doublet code providing insufficient alternatives | (3) | | Question
number | Answer | Additional guidance | Mark | |--------------------|--|-----------------------|------| | (d) | A answer that includes the following points: | | (3) | | | correct genotypes of parents (1) | | | | | affected genotype of children correctly identified (1) | | | | | correct calculation of probability is 0.5 (1) | Accept 50%, 1 in 2, ½ | | ### Q8. | Question
number | Answer Additional guidance | | | | |--------------------|--|--|-----|--| | (a) | An answer that includes two of the following points: • because it would be {unethical / wrong} to {kill / harm} the insects (1) • because the insects would contain {protein / amino acids} (1) • it would give an {incorrect / higher} value (for the {protein / amino acid} content of the galls) | | | | | | (1) | | (2) | | | Question
number | Answer | Mark | |--------------------|---|------| | (b)(i) | The only correct answer is B. | | | | A is incorrect because aspartate is the most polar molecule. | | | | $oldsymbol{c}$ is incorrect because aspartate is the most polar molecule. | | | | D is incorrect because aspartate is the most polar molecule. | (1) | | Question
number | Answer | Additional guidance | Mark | |--------------------|--|---|------| | (b)(ii) | Solubility of leucine calculated (1) solubility comparison with histidine calculated (1) | Example of calculation:
$5.5g \text{ in } 250 \text{ cm}^3 = 22.0 \text{ (g dm}^{-3}\text{)}$
$43.5 \div 22 = 1.98 / 2.0$ | (2) | | Question | Answer | Mark | |----------|--|------| | number | | | | * (c) | Answers will be credited according to candidate's deployment of knowledge and understanding of the material in relation to the qualities and skills outlined in the generic mark scheme. The indicative content below is not prescriptive and candidates are not required to include all the material indicated as relevant. Additional content included in the response must be scientific and relevant. Indicative content | | | | there is a high concentration of protein in the galls | | | | because the saliva stimulates protein synthesis | | | | so there is a store of protein for the insect | | | | there is a high concentration of amino acids in the galls | (6) | | | because the amino acids are needed for protein synthesis | | | | because the enzymes in the saliva were breaking proteins down | | | | for use by the insects | | | | {alanine / arginine / histidine} are very abundant in the galls | | | | because these amino acids are abundant in the protein in
the galls | | | | none of the amino acids are abundant in the tissues of the leaf with galls | | | | because they have moved into the gall | | | | leucine and tryptophan are not abundant in the galls | | | | as they have been used by the insects | | | Level | Marks | | |-------|-------|---| | | 0 | No awardable content. | | 1 | 1-2 | An explanation may be attempted but with limited interpretation or analysis of the scientific information and with a focus on mainly just one piece of scientific information. | | | | The explanation will contain basic information, with some attempt made to link knowledge and understanding to the given context. | | 2 | 3-4 | An explanation will be given, with occasional evidence of analysis, interpretation and/or evaluation of both pieces of scientific information. | | | | The explanation shows some linkages and lines of scientific reasoning with some structure. | | 3 | 5-6 | An explanation is made that is supported throughout by sustained application of relevant evidence of analysis, interpretation and/or evaluation of both pieces of scientific information. | | | | The explanation shows a well-developed and sustained line of scientific reasoning, which is clear and logically structured | Q9. | Question number | Answer | Mark | |-----------------|--|------| | (a) | A description that includes any five of the following points: | (5) | | | an mRNA molecule codes for each of the polypeptide chains in
collagen (1) | | | | mRNA carries a copy of the genetic code for collagen out of the nucleus to ribosome (1) | | | | each tRNA carries its own specific amino acid to the
{ribosome / mRNA} (1) | | | | anticodon on tRNA binds to codons on the mRNA (1) | | | | tRNA holds the amino acid in place while peptide bonds form (1) | | | | reference to start and stop codons on mRNA (1) | | | Question number | Answer | Mark | |-----------------|--|------| | (b) | An explanation that includes any four of the following points: | (4) | | | insoluble because there are hundreds of amino acids (1) | | | | insoluble because there are many hydrophobic R groups (1) | | | | strong because of the triple helix (1) | | | | therefore there are many repeating amino acid sequences (1) | | | | many small R groups so that the triple helix can form (1) | | | Question
number | Answer | Mark | |--------------------|----------|------| | (a)(i) | D ribose | (1) | | Question
number | Answer | Mark | |--------------------|--------------|------| | (a)(ii) | HO—P—O—OH—OH | (1) | | Question
number | Answer | Mark | |--------------------|------------------|------| | (a)(iii) | synthesis of RNA | (1) | | Question
number | Answer | Additional guidance | Mark | |--------------------|--|---|------| | (b)(i) | An answer that includes the following points: OMP decarboxylase acting as a biological catalyst (1) it lowers the activation energy of this reaction (1) | Allow forms an enzyme - substrate complex | (2) | | Question number | Answer | Mark | |-----------------|--|------| | (b)(ii) | An explanation that includes the following points: OMP decarboxylase is specific (for this substrate) (1) | (3) | | | because the active site of this enzyme has a particular shape (1) therefore binds only with orotidine monophosphate (1) | |