| 1 | Pla | nts can respond to environmental cues using IAA (auxin) and photoreceptors. | | |-------|-----|---|-----| | | (a) | A plant was kept in a cycle of 12 hours in the light and then 12 hours in the dark. This plant did not flower. | | | | | It was then placed in an environment with 15 hours in the light and 9 hours in the dark. The plant then flowered. | | | | | Explain how this change in light conditions stimulated this plant to flower. | (3) | (b) | IAA in the stem of the plant is involved in phototropism. | | | | | (i) Give three similarities between IAA and animal hormones. | | | | | | (3) | | | | | | | ••••• | | | | | ••••• | | | | | ••••• | | | | | ••••• | | | | | ••••• | | | | | | | | | | ••••• | | | | | | | | | | (1 | The auxin stimulate the weeds to grow rapidly. | | | | | |----|--|--------|--|--|--| | | Suggest an explanation for how auxins stimulate the weeds to grow rapidly but not the grass. | | | | | | | | (2) | (Total for Question 1 = 8 | marks) | | | | - **2** IAA (auxin) is a plant growth substance. - (a) A student investigated the effect of natural IAA and artificial IAA on shoot growth. The diagram below shows how she set up her investigation. (i) The student also set up a control. | Describe a | suitable | control | for this | investigation. | |-------------------|----------|----------|-----------|----------------| | D C S C I I S C G | Januaric | COLLCION | 101 11113 | mivestigation. | (1) | (ii) After 48 hours, the student recorded her observations of the growth of the
shoots. From her observations, she concluded that both natural and artificial IAA
affected growth. She also concluded that the artificial IAA had a greater ef
than the natural IAA. | | | | | |---|-------|---|------|--| | | | Suggest what she recorded and explain how the IAA in the agar affected the growth of the shoot. | (5) | | | | | | (3) | (b |) IAA | A is known to bind to transcription factors. | | | | | Sug | ggest how IAA can stimulate cells to synthesise proteins. | (4) | | | | | | (-1) | **3** The diagram below shows changes in potential difference across the membrane of a neurone during an action potential. | (a) Describe the events that begin the depolarisation of the membrane of a neuror | ne. | |---|-----| | | (2) | | | | | | | | | | (b) Complete the table below to show which ions are able to move across the membrane at positions **A** and **D** shown in the diagram. Put a cross \boxtimes in the box if the membrane is permeable to the ion. (2) | Position on diagram | Permeable to sodium ions | Permeable to potassium ions | |---------------------|--------------------------|-----------------------------| | A | \boxtimes | | | D | × | | | (c) Give an explanation for the movement of ions at position C on the diag | gram.
(3) | |--|---------------| | | | | | | | | | | | | | (d) Explain how the potential difference across the membrane is returned resting level in the time between 1.5 ms and 4.0 ms on the diagram. | to the | | | | | | | | (Total for Question | 3 = 10 marks) | | . . | Ту | ype of neuror | ne | |--|---|---------------|-------------| | Feature | Sensory | Relay | Motor | | Found only in the central nervous system | \boxtimes | \boxtimes | \boxtimes | | Cell terminates at the effector | × | × | \boxtimes | | Pre-synaptic membrane not found in the central nervous system | × | × | × | | certain her vous system | | | | | Impulse stimulated by the receptor) Rod cells and muscle cells in the eye both (i) Name the chemical reaction that occu | | broken down | . (1 | | Impulse stimulated by the receptor) Rod cells and muscle cells in the eye both (i) Name the chemical reaction that occu | require ATP. Irs when ATP is | broken down | . (1 | | Impulse stimulated by the receptor) Rod cells and muscle cells in the eye both (i) Name the chemical reaction that occu | require ATP. Irs when ATP is | broken down | . (1 | | Impulse stimulated by the receptor) Rod cells and muscle cells in the eye both (i) Name the chemical reaction that occu | require ATP. Irs when ATP is | broken down | . (1 | | Impulse stimulated by the receptor) Rod cells and muscle cells in the eye both (i) Name the chemical reaction that occu | require ATP. Irs when ATP is | broken down | . (1 | | Impulse stimulated by the receptor) Rod cells and muscle cells in the eye both (i) Name the chemical reaction that occu | require ATP. Irs when ATP is cell soon after a w light. | broken down | noved from | 4 The nervous system is made up of many different neurones including those involved | (iii) Describe the role of ATP in the contraction of | a muscle fibre. | (5) | |--|-------------------------------|------| | | | (5) | |
 | | | | | | | | | | | |
 | | | | | | | | | | | |
 | | | | | | | | | | | |
 | | | | | | | | | | | |
 |
 | | | | | | | | | | | | | (Total for Question 4 = 12 ma | rks) |