Questions Q1. Fritillaria delavayi is a small plant (height 7 cm), that grows on rocky slopes on mountains in China. The image shows Fritillaria delavayi. For at least 2 000 years, this plant has been collected and used in Chinese medicine. It is not known to be eaten by animals. In less accessible regions, where few humans go, the plants are bright green with bright yellow flowers. In locations where bulbs are collected in high numbers, most plants have greyish-brown leaves and flowers. (i) Describe how scientists can use gel electrophoresis to show that these plants belong to Scientists believe that the greyish-brown plants are the same species as the brightly-coloured plants. | the same species. | | |-------------------|-----| | | (4) | Explain why the features of the brightly-coloured plants enable them to grow successfull the areas where they are not collected by humans. | у | |--|----| | • | 2) | (Total for guestion = 6 mark | s) | ### Q2. Single-celled algae can be trapped in gel beads and used to study photosynthesis. The beads are placed in a test tube of hydrogencarbonate indicator. The table shows the colour of the indicator when it contains different concentrations of carbon dioxide. | Colour of indicator | Relative carbon dioxide concentration | |---------------------|---------------------------------------| | yellow | highest | | orange | higher than atmospheric air | | red | same as atmospheric air | | magenta | lower than atmospheric air | | purple | lowest | A student used the following method to investigate the effect of light intensity on the rate of photosynthesis. - 1. Set up five test tubes, each half-filled with red hydrogencarbonate indicator. - 2. Add a teaspoon of gel beads containing single-celled algae to each test tube and close with a bung. - 3. Place each test tube at a different distance from a lamp in a dark room. - 4. Leave the tubes for 30 minutes. - 5. Record the colour of the hydrogencarbonate indicator in each tube and the position of the gel beads. The table shows the results. | Distance from lamp / cm | 5 | 15 | 25 | 35 | 45 | |--|----------------|-----------------------------|--------|--------|--------| | Colour of indicator after 30 minutes | purple | purple | red | orange | orange | | Position of gel beads in tube after 30 minutes | half-way
up | less than
half-way
up | bottom | bottom | bottom | | (i) De | escribe two | control t | ubes that | t should b | e used ir | n this inve | estigation. | | | | |---------|---|-----------|-----------|------------|-----------|-------------|-------------|-------------|-------------|-----| | | | | | | | | | | | (2) | • | (ii) Ex | xplain the | changes i | in colour | of the hyd | drogenca | rbonate i | ndicator in | n this inve | estigation. | | | | | | | | | | | | | (3) | | | • | (Total for question = 5 marks) ### Q3. Single-celled algae can be trapped in gel beads and used to study photosynthesis. The beads are placed in a test tube of hydrogeniarbonate indicator. The table shows the colour of the indicator when it contains different concentrations of carbon dioxide. | Colour of indicator | Relative carbon dioxide concentration | |---------------------|---------------------------------------| | yellow | highest | | orange | higher than atmospheric air | | red | same as atmospheric air | | magenta | lower than atmospheric air | | purple | lowest | A student used the following method to investigate the effect of light intensity on the rate of photosynthesis. - 1. Set up five test tubes, each half-filled with red hydrogencarbonate indicator. - 2. Add a teaspoon of gel beads containing single-celled algae to each test tube and close with a bung. - 3. Place each test tube at a different distance from a lamp in a dark room. - 4. Leave the tubes for 30 minutes. - 5. Record the colour of the hydrogencarbonate indicator in each tube and the position of the gel beads. The table shows the results. | Distance from lamp
/ cm | 5 | 15 | 25 | 35 | 45 | |--|----------------|-----------------------------|--------|--------|--------| | Colour of indicator after 30 minutes | purple | purple | red | orange | orange | | Position of gel beads in tube after 30 minutes | half-way
up | less than
half-way
up | bottom | bottom | bottom | The colour of the indicator and the position of the beads can be used to give a quantitative measure of the effect of light intensity. | Describe how the method could be modified to give valid, quantitative results. | | |--|-----| | | (3) | (Total for question = 3 marks) ### Q4. Cadmium is an environmental pollutant that affects the synthesis of plant pigments. A scientist investigated the effect of cadmium on the synthesis of chlorophyll and carotenoid pigments in plants. The scientist used the following steps in the method. Step 1: plants were grown in darkness for one week to produce yellow leaves Step 2: leaf discs of the same diameter were taken from the first pair of these leaves **Step 3**: a total of 25 discs was put into tubes containing different cadmium chloride concentrations Step 4: these tubes were kept at 27 °C and exposed to the same source of light The table shows information about the pigments chlorophyll a and chlorophyll b and the carotenoids present in the leaf discs after 48 hours. | Cadmium
chloride
concentration
/ a.u. | Mean
concentration
of chlorophyll
/ mg kg ⁻¹ | Mean
concentration
of carotenoid
/ mg kg ⁻¹ | Ratio of chlorophyll a:b | Ratio of carotenoid : chlorophyll | |--|--|---|--------------------------|-----------------------------------| | 0.0 | 384 ± 4.2 | 444 ± 6.2 | 1.23 | 1.15 | | 0.1 | 204 ± 4.9 | 270 ± 4.5 | 1.00 | 1.32 | | 1.0 | 180 ± 3.6 | 207 ± 5.2 | 0.83 | 1.15 | | 3.0 | 146 ± 4.1 | 140 ± 3.1 | 0.81 | 0.95 | | 5.0 | 126 ± 2.7 | 91 ± 1.0 | 0.56 | 0.71 | | 10.0 | 102 ± 1.9 | 64 ± 1.1 | 0.80 | 0.63 | | (i) Analyse the data to deduce the effect of cadmium on the synthesis of plant pigments. | | |--|----| | | 3) | (ii) Justify the method used by the scientist. | | |--|----| | | (5 | | | | | | | | | | | | • | | | | | | | | | | | | | | | | | | • | | | | | | | | | | | | | | | | | | • | | | | | | | (Total for question = 8 marks) Q5. - (a) A student investigated the effect of ethanol on plant cell membranes. - Step 1: The student cut leaf discs from leaves, using a cork borer. - **Step 2:** These leaf discs were then added to a boiling tube containing 10 cm³ of 40% ethanol solution. The pigments in the leaf discs dissolved in the ethanol, producing a green solution. - **Step 3:** The boiling tube was shaken and the amount of red light absorbed by this solution (absorbance) was measured at the start. - Step 4: The absorbance was measured every 10 minutes, for an hour. The graph shows the results of this investigation. | (i) Explain why red light was used in this investigation. | (2) | |--|-----| | | | | (ii) Explain the absorbance value at 0 minutes. | (2) | | | | | (iii) Explain the effect of ethanol on plant cell membranes. | (2) | | | | (2) (b) The student also carried out a control, using water instead of 40% ethanol. Draw a line on the graph to show the results for this control. (c) The student then investigated the effect of ethanol concentration on leaves from different plant species. | data. | | |-------|-----| | | (5) | (Total for question = 13 marks) # **Edexcel (B) Biology A-level - Photosynthetic Pigments** Q6. | Photosynthetic pigments are found in plant leaves. | | |---|-----| | Describe how you could use chromatography to separate these pigments. | | | | (3) | | | | | | | | | • | | | • | | | | | (Total for question = 3 mai | ks) | | | | | Q7. | | | Plant pigments are involved in photosynthesis. | | | The action spectrum of chloroplasts and the absorption spectrum of the pigments can be determined. | | | (i) State the difference between an action spectrum and an absorption spectrum. | | | | (1) | | | | | | | | | • | | (ii) State how an action spectrum and an absorption spectrum show that chlorophyll is us in photosynthesis. | ed | | | (1) | | | | | | | | | | | (Total for question = 2 mai | ks) | | / | - / | Q8. White clover plants provide a rich source of nitrogen for cattle when grown with grass plants in fields. The photograph shows a clover plant growing in a field of grass. A student noticed that the grass plants growing near patches of clover were a darker green than other grass plants. Devise an investigation to show whether the presence of clover plants affects the concentration of the green pigment chlorophyll in grass plants. | (6) | |------| | | | | | •• | | | | | | | | | | | | | | | | | | •• | | | |
 | (Total for question = 6 marks) ### Edexcel (B) Biology A-level - Photosynthetic Pigments Q9. Macroalgae and microalgae are photosynthetic organisms. Seaweeds are macroalgae that live attached to rock in coastal areas. Some seaweeds are green, some are brown and some are red. The colour of seaweeds depends on the photosynthetic pigments contained in their cells. Green seaweeds contain chlorophyll, brown seaweeds contain chlorophyll and fucoxanthin and red seaweeds contain chlorophyll and phycoerythrin. | (i) Explain why these seaweeds have different absorption spectra and action spectra. | | |--|-----| | | (3) | (ii) The diagram shows the position that these seaweeds occupy on submerged rock and the depth to which different wavelengths of light penetrate into the water. | Explain why the seaweeds occupy different positions on the submerged rock. | (3) | |--|-----| (Total for question = 6 marks) ### Q10. Macroalgae and microalgae are photosynthetic organisms. Seaweeds are macroalgae that live attached to rock in coastal areas. Some seaweeds are green, some are brown and some are red. The colour of seaweeds depends on the photosynthetic pigments contained in their cells. Green seaweeds contain chlorophyll, brown seaweeds contain chlorophyll and fucoxanthin and red seaweeds contain chlorophyll and phycoerythrin. Fucoxanthin is found in both macroalgae and microalgae. Fucoxanthin has anti-inflammatory, anti-tumour, anti-diabetes, anti-malarial and anti-obesity activity in humans. The diagram outlines the steps taken to extract fucoxanthin from microalgae. The table shows three methods used for washing the cells and extracting the fucoxanthin. | Method | Liquid used for
washing cells | Chemical used to
extract fucoxanthin | |--------|----------------------------------|---| | Α | water | ethanol | | В | culture media | ethanol | | С | culture media | water | The graph shows the mass of fucoxanthin extracted from 1 dm³ of cell culture. (i) Calculate how many times more fucoxanthin was extracted using method A compared with method B. (1) (Total for question = 4 marks) | | Answer | | |------|--|-----| | (ii) | Explain why different masses of fucoxanthin were extracted using these three | (3) | # Mark Scheme ## Q1. | Question
Number | Answer | Additional Guidance | Mark | |--------------------|---|--|---------| | (i) | An answer that includes four of the following: | | | | | obtain DNA (from the two types of plants) (1) | | | | | {use of restriction enzymes to cut DNA into
fragments / use of PCR to amplify DNA} (1) | | | | | {DNA / fragments} (loaded) on (agarose) gel with
{current passed through / voltage or potential
difference applied} (1) | Accept movement of
(negatively charged) DNA
moves to positive electrode | | | | fragments of DNA are separated (1) | Accept description /
diagram of banding pattern
Accept shorter fragments
travel further | | | | {same / similar} (banding) pattern suggests
they are the same species (1) | Accept converse | Exp (4) | | Question
Number | Answer | Additional Guidance | Mark | |--------------------|--|--|------------| | (ii) | An answer that includes two of the following: (if leaf is green it contains) chlorophyll / photosynthetic pigments (1) | | | | | so more {light / more wavelengths of light}
absorbed for photosynthesis (1) | Accept more light / wavelengths of light leads to higher rate of photosynthesis | | | | so more glucose produced for growth (1) | Accept more GALP / TP /
GP for growth | | | | OR (if flower is brightly coloured) it attracts {pollinators / insects} (1) | | | | | so (more likely to) reproduce
successfully (1) | Accept so increased genetic variation (as less self-pollination) | | | | to produce seeds / pass trait on (1) | Accept asexual reproduction
(through bulb) still
possible if pollination
does not occur | Exp
(2) | ## Q2. | Question
Number | Answer | Additional Guidance | Mark | |--------------------|--|--|------------| | (i) | An answer that includes
the following: | | | | | tube with no gel beads
(tube containing
hydrogencarbonate
indicator in light) (1) | Accept tube containing gel beads without algae (tube containing hydrogencarbonate indicator in light) / no algae | | | | tube (containing
hydrogencarbonate
indicator and
gel beads) in
light-proof cover (1) | Accept tube (containing hydrogencarbonate indicator and gel beads) in the dark | Exp
(2) | # Edexcel (B) Biology A-level - Photosynthetic Pigments | Question
Number | Answer | Additional Guidance | Mark | |--------------------|--|--|------------| | (ii) | An explanation that includes three of the following: | Allow ref to LDR or carbon fixation for photosynthesis | | | | {at 5cm and 15cm / at high light intensity / close to lamp} (indicator is purple) there is more photosynthesis, so carbon dioxide being taken in (1) | Accept at 5 and 15 cm light
is not a limiting factor
for photosynthesis, so
carbon dioxide is taken in.
Accept converse | | | | (at 5 and 15cm) more photosynthesis than
respiration so net uptake of carbon dioxide (1) | Mp2 may also get mp1 | | | | at 25cm (indicator is red) the carbon dioxide used in
photosynthesis equals the carbon dioxide
produced in respiration (1) | Accept reference to
compensation point
Accept rate of
photosynthesis equals
rate of respiration | | | | {at 35 or 45cm / at low light intensity / far from lamp} (indicator is orange) there is more respiration than photosynthesis, so carbon dioxide released (1) | Accept there is less light
for photosynthesis so
less carbon dioxide is
used than is produced
in respiration
Accept net increase
in carbon dioxide | Exp
(3) | # Q3. | Question
Number | Answer | Additional Guidance | Mark | |--------------------|--|---|---------| | | An answer that includes three of the following: | | | | | two examples of standardisation (2) | eg equal volume of
sodium hydrogen
carbonate indicator /
equal number of algal | | | | and a maximum of two from: | balls in each tube / mass
of algae / mass or | | | | set up a reference set of solutions at different carbon
dioxide concentrations (1) | volume of beads / same
temperature | | | | compare by {colour matching / using a colorimeter} (1) | | | | | time taken for algal balls to rise {a known distance / to
the surface of the tube} (as oxygen is being produced
in photosynthesis) (1) | Accept measurement
of position of / distance
moved by algal beads
in tube | Exp (3) | ## Q4. | Question
Number | Answer | Mark | |--------------------|---|------| | (i) | An answer that makes reference to the following: | | | | decreases chlorophyll and carotenoid / plant pigment
(synthesis) (1) | | | | chlorophyll a (synthesis) is less than chlorophyll b (synthesis) /
chlorophyll a more inhibited / chlorophyll b less inhibited (1) | | | | carotenoid (synthesis) is less than chlorophyll (synthesis) /
carotenoid more inhibited than chlorophyll / chlorophyll less
inhibited than carotenoid (1) | | | | SD show difference is significant (1) | (3) | | Question
Number | Answer | | |--------------------|---|-----| | (ii) | An answer that makes reference to five of the following: | | | | grown in darkness for a week so leaves big enough to obtain discs / so leaves
contain {less / no pigment} (1) | | | | discs same {diameter / leaves / leaf age} because affects pigment {amount /
content / concentration} (1) | | | | 25 discs used so that sufficient pigment obtained / calculate SD (1) | | | | {control / 0.0} solution allows comparison (1) | | | | same temperature as it affects enzymes (1) | | | | same light {wavelength / source / intensity} as light affects synthesis of pigments (1) | | | | 48 hours allows time for pigment synthesis (1) | (5) | ## Q5. | Question
Number | Acceptable Answers | Additional
Guidance | Mark | |--------------------|---|------------------------|------| | (a)(i) | An explanation that makes reference to the following: | | | | | red is absorbed (1) | | | | | because of the presence of chlorophyll (1) | | (2) | | Question
Number | Acceptable Answers | Additional
Guidance | Mark | |--------------------|--|------------------------|------| | (a)(ii) | An explanation that makes reference to the following: | | | | | {chlorophyll / leaf pigment} was present (1) | | | | | because some cells are damaged /
discs not washed (1) | | (2) | | Question
Number | Answer | Additional Guidance | Mark | |--------------------|--|---------------------|------| | (a)(iii) | An explanation that makes reference to the following: | | | | | ethanol {disrupts / damages / dissolves /
affects}
the phospholipid (1) | | | | | therefore the membrane
{becomes more permeable / allows
pigment out} (1) | | (2) | | Question
Number | Answer | Additional Guidance | Mark | |--------------------|--|---------------------|------| | (b) | An answer that makes reference to the following: | | | | | starts at 0.05 absorbance value (1) | | | | | • flat line along 0.05 absorbance value (1) | | (2) | | Question
Number | Answer | Additional Guidance | Mark | |--------------------|---|---------------------|------| | (c) | An answer that makes reference to five of the following: | | | | | use leaves of {same age / same position on
plant} because this affects concentration of
pigment (1) | | | | | obtain leaf discs from the same part of the
leaf because this affects concentration of
pigment (1) | | | | | use same {cork borer / size of leaf disc /
diameter of leaf disc} because this affects
concentration of pigment (1) | | | | | use same temperature because
temperature affects the rate of diffusion (1) | | | | | use same volume of ethanol so chlorophyll
is diluted the same (1) | | | | | replicate each ethanol concentration to
{see if results are consistent / identify
anomaly /
to calculate standard deviation / allow
statistical test} (1) | | | | | wash discs to remove pigment (1) | | (5) | # Q6. | Question
Number | Answer | Additional
Guidance | Mark | |--------------------|---|---|------| | 7 | A description that makes reference to three of the following: | | | | | add {extract / pigment} to
(start) line (1) | | | | | (concentrate spot by) dry and repeat (1) | e.g. propanone /
ethanol / petroleum
ether
DO NOT ACCEPT | | | | place paper in named solvent (1) | water | | | | obtain solvent front / place paper so line or spot above solvent / until reaches near top (1) | | (3) | # Q7. | Question
Number | Answer | Additional Guidance | Mark | |--------------------|--|---|------| | (i) | absorption spectrum shows absorption of light of
different wavelengths and action spectrum shows
rate of photosynthesis at each wavelength | ACCEPT absorption spectrum involves wavelengths only and action spectrum involves photosynthesis / oxygen production only | | | | | | (1) | | Question
Number | Answer | Additional Guidance | Mark | |--------------------|---|---|------| | (ii) | spectra are similar / spectra overlap /
peaks and troughs follow similar pattern | ACCEPT similar peak at blue / similar peak at red / similar trough at green | | | | | 700-00 100-00F | (1) | ## Q8. | Question
Number | Answer | Additional Guidance | Mark | |--------------------|--|---|------| | | An explanation that makes reference to six of the following: • grass taken from in or near clover and from an areawithout clover (1) | Allow lab-based
experiment where grass
is grown with and
without clover | | | | standardised mass of grass plants collected (1) use of known volume of (named) solvent to extract pigment from (known mass of) grass (1) | Allow use of {sand /
pestle and mortar/food
mixer} to grind up grass
Allow extract filtered | | | | absorbance measured in colorimeter (1) red filter used to measure absorbance of green chlorophyll(1) colorimeter zeroed with solvent (1) | Allow details of
chromatography if
carried out as an
alternative with areaor
intensity of green spots
measured | | | | replicates taken and means calculated (1) | | (6) | | | t test used to look for significant
difference (1) | Allow compare standard deviation | | | | other relevant factor monitored (1) | | | # Q9. | Question
Number | Answer | Additional Guidance | Mark | |--------------------|---|--|------| | (i) | An explanation that makes reference to three of the following: • each pigment will absorb different wavelengths (of light) (1) • each pigment will absorb different amounts of light at eachwavelength (1) • action spectrum is different because the seaweeds are absorbingdifferent wavelengths of light (1) • the rate of photosynthesis will therefore be different at each wavelength(1) | ACCEPT each pigment will reflect different wavelength (of light) description of which colour light is {reflected / absorbed} | (3) | | Question
Number | Answer | Additional Guidance | Mark | |--------------------|--|---------------------------|------| | (ii) | An explanation that makes reference to three of the following: | ALLOW plants for seaweeds | | | | green seaweeds found in shallow water as
they {cannot absorb thegreen light / can
absorb the red light} (1) | | | | | {brown / red} seaweeds can absorb {green / blue / other} wavelengths of light so are positioned further down as thesewavelengths can penetrate further (1) | | (3) | | | seaweeds positioned so that they can
absorb light for
{photosynthesis / light-dependent
reactions / photolysis} (1) | | | | | seaweeds positioned to avoid
competition with the other types of
seaweed (1) | | | # Q10. | Question
Number | Answer | Additional Guidance | Mark | |--------------------|--|---|------| | (i) | • 2.0 / 1.9 / 1.93 (times / ×) | DO NOT ACCEPT 1.93 recurring | (1) | | (ii) | An explanation that makes reference to three of the following: • water is more effective than culture media for washing (1) • {water is not the solvent / ethanol is the solvent} for fucoxanthin(1) • ethanol {increases permeability of / disrupts} (cell / vacuole)membrane (1) • more fucoxanthin extracted in method A (compared with methodB) because water enters the seaweed {by osmosis / causing the cells to burst} (1) | ACCEPT more fucoxanthin extracted in A becausewashed with water | (3) |