1 (a) The diagram below shows some of the steps in the process of photosynthesis.



(i) Name molecules **P** and **Q** in the diagram.

(1)

molecule P

molecule Q

(ii) Place a cross  $\boxtimes$  in the box next to the names of molecules  ${\bf R}$  and  ${\bf S}$  in the diagram.

(1)

- A ADP and oxidised NADP
- B ADP and reduced NADP
- ☑ C ATP and oxidised NADP
- **D** ATP and reduced NADP

| (iii) Describe the role of RUBISCO in the production of GALP in the light-inde reaction.  | pendent |
|-------------------------------------------------------------------------------------------|---------|
| reaction.                                                                                 | (4)     |
|                                                                                           |         |
|                                                                                           |         |
|                                                                                           |         |
|                                                                                           |         |
|                                                                                           |         |
|                                                                                           |         |
|                                                                                           |         |
|                                                                                           |         |
| (b) The electronmicrograph below shows a chloroplast.                                     |         |
| Magnification ×7500                                                                       |         |
| (i) Place a cross $\boxtimes$ in the box next to the name of the part labelled <b>Z</b> . | (1)     |
| ☑ A cytoplasm                                                                             |         |
| ■ B matrix                                                                                |         |
| C stroma                                                                                  |         |
| ■ D thylakoid                                                                             |         |

PhysicsAndMathsTutor.com

(Total for Question 1 = 13 marks)

2 (a) The diagram below shows some of the steps in the process of photosynthesis.



| (i)  | Pla | ce a cross $\boxtimes$ in the box next to the name of molecule <b>P</b> in the diagram. | (1) |
|------|-----|-----------------------------------------------------------------------------------------|-----|
| X    | A   | carbon dioxide                                                                          |     |
| X    | В   | oxidised NADP                                                                           |     |
| X    | C   | reduced NADP                                                                            |     |
| X    | D   | RUBISCO                                                                                 |     |
| (ii) | Na  | me the molecules <b>R</b> and <b>S</b> in the diagram.                                  |     |

(1)

molecule **S** 

| (iii) Describe how molecule <b>Q</b> is produced. | (4) |
|---------------------------------------------------|-----|
|                                                   |     |
|                                                   |     |
|                                                   |     |
|                                                   |     |
|                                                   |     |
|                                                   |     |
|                                                   |     |
|                                                   |     |
|                                                   |     |
|                                                   |     |
|                                                   |     |

(b) The electronmicrograph below shows an image of a chloroplast.



- (i) Place a cross  $\boxtimes$  in the box next to the name of the part labelled  ${\bf Z}$ .
- (1)

- 🛛 A granum
- B ribosome
- C starch grain

| (ii) The equation below can be used to ca                                     | alculate the magnification of this chloroplast.   |       |
|-------------------------------------------------------------------------------|---------------------------------------------------|-------|
| image length = actua                                                          | al length $	imes$ magnification                   |       |
| The actual length of this chloroplast is                                      | s 0.007 mm.                                       |       |
| Measure the image length between li<br>calculate the magnification of the ima |                                                   |       |
|                                                                               | magnification =                                   |       |
| (III) Describe the structure of chloroplasts                                  | in relation to their roles in photosynthesis. (3) |       |
|                                                                               |                                                   |       |
|                                                                               |                                                   |       |
|                                                                               |                                                   |       |
|                                                                               |                                                   |       |
|                                                                               |                                                   |       |
|                                                                               |                                                   |       |
|                                                                               |                                                   | ••••• |
|                                                                               |                                                   |       |
|                                                                               |                                                   |       |
|                                                                               |                                                   |       |
|                                                                               |                                                   |       |

- **3** Both plants and animals are able to respond to stimuli using photosensitive pigments.
  - (a) The photosensitive pigment in plants can be involved in a range of responses to environmental cues. This includes flower production in response to day length.

The diagram below shows the results of a study on the effect of day length on flowering in one species of plant.



(i) Place a cross ⊠ in the box to complete the conclusion made using these results.

The critical amount of daylight needed for the production of flowers is

(1)

- A between 15 and 18 hours
- **B** between 12 and 15 hours
- C between 9 and 12 hours
- **D** between 6 and 9 hours

|     | ,     | The        | wers is likely to be                                                                 | (1) |
|-----|-------|------------|--------------------------------------------------------------------------------------|-----|
|     | X     | A          | IAA                                                                                  | (1) |
|     | X     | В          | chlorophyll                                                                          |     |
|     | X     | C          | FAD                                                                                  |     |
|     | X     | D          | phytochrome                                                                          |     |
|     | (iii) | Su         | ggest how the plants were grown to ensure this study was valid.                      | (2) |
|     |       |            |                                                                                      |     |
|     |       |            |                                                                                      |     |
|     |       |            |                                                                                      |     |
|     |       |            |                                                                                      |     |
|     |       |            |                                                                                      |     |
|     | (iv)  |            | ggest how this study could be changed to produce a more accurate nclusion.           | (1) |
|     |       |            |                                                                                      |     |
|     |       |            |                                                                                      |     |
|     |       |            |                                                                                      |     |
| (b) |       |            | me plant species, day length is not an environmental cue for the production<br>vers. |     |
| (b) | of f  | low<br>gge | vers. st <b>one</b> environmental cue, other than day length, that could stimulate   |     |
| (b) | of f  | low<br>gge | vers.                                                                                | (1) |
| (b) | of f  | low<br>gge | vers. st <b>one</b> environmental cue, other than day length, that could stimulate   | (1) |
| (b) | of f  | low<br>gge | vers. st <b>one</b> environmental cue, other than day length, that could stimulate   | (1) |

| (c) | (c) Rhodospin is found in rod cells in the retina of mammalian eyes. |                                                                                                                                                                            |     |  |  |
|-----|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--|--|
|     | (i)                                                                  | State the location of rhodopsin within a rod cell.                                                                                                                         | (1) |  |  |
|     |                                                                      |                                                                                                                                                                            |     |  |  |
|     | (ii)                                                                 | In the table below, place a tick $(\checkmark)$ in the box if the statement applies to the description and place a cross $(x)$ in the box if the statement does not apply. | (3) |  |  |

|                               | Statement                            |                    |          |  |  |
|-------------------------------|--------------------------------------|--------------------|----------|--|--|
| Description                   | Opsin binds to the rod cell membrane | Rhodopsin bleaches | ATP used |  |  |
| Rhodopsin responding to light |                                      |                    |          |  |  |
| Rhodopsin being reformed      |                                      |                    |          |  |  |

(Total for Question 3 = 10 marks)

4 The photograph below shows part of a leaf, as seen using a hand lens. Lamina, a thin Midrib containing area containing photosynthetic branches of vessels · from the stem cells Veins connecting midrib vessels with photosynthetic cells Magnification ×20 (a) Suggest why each of the following is important for the production of carbohydrates in the photosynthetic cells. (i) The thin lamina (2) (ii) Vessels in the midrib (2)

- (b) The photosynthetic cells contain many chloroplasts.
  - (i) Complete the table below by naming the part of the chloroplast where each of the reactions, **R**, **S** and **T**, takes place.

(3)

| Reaction | Details                                    | Part of the chloroplast |
|----------|--------------------------------------------|-------------------------|
| R        | ADP + inorganic phosphate $ ightarrow$ ATP |                         |
| S        | RuBP + $CO_2 \rightarrow 2 \times GP$      |                         |
| Т        | $2 \times GP \rightarrow 2 \times GALP$    |                         |

| P | hysics | Anc | dMathsTutor.com (Total for Question 4 = 13 mar                              | ·ks) |
|---|--------|-----|-----------------------------------------------------------------------------|------|
|   |        |     |                                                                             |      |
|   |        |     |                                                                             |      |
|   |        |     |                                                                             |      |
|   |        |     |                                                                             |      |
|   |        |     |                                                                             |      |
|   |        |     |                                                                             |      |
|   |        |     |                                                                             |      |
|   |        |     |                                                                             |      |
|   |        |     |                                                                             |      |
|   |        | cel | lulose in plant cell walls.                                                 | (4)  |
|   |        | Sug | ggest how GALP, formed by reaction <b>T</b> , can be used to synthesise the |      |
|   |        |     | transcriptase                                                               |      |
|   |        |     | RUBISCO                                                                     |      |
|   |        |     | phosphorylase                                                               |      |
|   | ×      | Α   | endonuclease                                                                | (1)  |
|   | (iii)  | Pla | ce a cross 🛮 in the box next to the name of the enzyme involved in reaction |      |
|   | X      | D   | photolysis                                                                  |      |
|   | X      | C   | phosphorylation                                                             |      |
|   | X      | В   | hydrolysis                                                                  |      |
|   | X      | Α   | carbon fixation                                                             |      |
|   | (ii)   | Pla | ce a cross $\boxtimes$ in the box next to the name of reaction <b>R</b> .   | (1)  |