Question Number	Answer	Mark
1 (a)	1. rate is same for up to 30 minutes / eq ;	
	2. faster (uptake) for A than B / eq ;	
	 (uptake of) A is linear throughout whereas (uptake of) B is not / eq ; 	
	 uptake of substance B levels off at {2 to 2.2} hours whereas uptake of A does not / eq ; 	
	 credit correct manipulation of comparative figures ; 	maximum (3)

Question Number	Answer	Mark
1* (b) QWC	(QWC - Spelling of technical terms <i>(shown in italics)</i> must be correct and the answer must be organised in a logical sequence)	
	 correct ref to diffusion (of substance B) occurring due to concentration difference / eq; 	
	 idea of rate of uptake decreases ; as the concentration gradient decreases / eq ; 	
	 4. (net) uptake stops / eq ; 5. when concentration inside cell equals that outside the cell / eq ; 	maximum (4)

Question Number	Answer	Mark
1 (c)	 active transport is {against /eq} concentration gradient /eq ; 	
	2. active transport requires ATP /eq ;	
	 ref to involvement of (membrane) proteins in active transport ; 	maximum (2)

Question Number	Answer	Mark
2 (a)	1. protein release from ribosome /eq ;	
	2. enter the rER {lumen / eq} ;	
	3. becomes packaged into (rER) vesicles ;	
	 4. (vesicles / proteins) move to Golgi (apparatus) / {vesicles fuse with / protein enters} Golgi ; 	
	 protein {modified / carbohydrate added / named carbohydrate added} / eq ; 	
	 then become packaged into (secretory) vesicles / eq ; 	
	 glycoprotein becomes part of (vesicle) membrane ; 	
	 vesicles {move towards / fuse with} the cell (surface) membrane ; 	max (5)

Question Number	Answer	Mark
2(b)(i)	 totipotent (stem cells) can give rise to {all / any / 216} cell types / eq ; (stem cells) are {undifferentiated / unspecialised} / eq ; can keep dividing / eq ; 	max (2)

Question Number	Answer	Mark
2(b)(ii)	they can {give rise to / eq} white blood cells / eq ;	(1)

Question Number	Answer	Mark
2(b)(iii)	<pre>possible route to {infection / eq} / rejection by recipient / increased chance of becoming cancerous /eq ;</pre>	(1)

Question Number	Answer	Additional Guidance	Mark
3(a)	correct answer only gains both marks		
	1. 2.2 - 7.6 = 24.6 ;	ACCEPT 7.6 ÷ 32.2	
	2. (÷ 32.2) × 100 = 76.4 / 76. 40 ;	100 - 23.6 = 76.4 / 76.40	(2)

Question Number	Answer	Additional Guidance	Mark
3(b)	1. idea of producing liquid extract of cabbage;		
	2. description of titration ;	2. e.g. se volume of extract and find the volume of DCPIP needed or converse	
	3. reference to use of DCPIP ;		
	4. correct colour change described ;	4. e.g. it oes colourless when extract added, add DCPIP until it goes blue	
	 compare volumes with standard e.g. reference to use of calibration curve / eq ; 		
	 description of appropriate standardisation of extract e.g. mass of cabbage, volume of liquid added to cabbage ; 		
			(4)

Question Number	Answer	Additional Guidance	Mark
3(c)(i)	1. cell membranes {damaged / permeable / eq} ;		
	 vitamin C leaves the {cells / cabbage} (because it is water soluble); 		
	 vitamin C is destroyed by {boiling / enzyme / ascorbic acid oxidase }; 		(2)

Question Number	Answer	Additional Guidance	Mark
3(c)(ii)	the { enzyme / ascorbic acid oxidase } would have been denatured (quicker when added to the boiling water) ;	ACCEPT for cold water: enzyme is more active as water is heated up or vitamin C leaks out as it heats up	(1)

Question Number	Answer	Additional Guidance	Mark
3(d)	 idea that stored sauerkraut still contains some vitamin C. 		
	2. cabbage would {rot / decompose / eq } ;	ACCEPT sauerkraut does not rot	(1)

Answer	Mark
(QWC – Spelling of technical terms must be correct and the answer must be organised in a logical sequence)	
 (gas exchange) occurs through the { cell membrane / phospholipid bilayer} ; 	
2. idea that the <i>membrane</i> is thin ;	
3. oxygen enters cell (from water) / eq ;	
4. <i>carbon dioxide</i> leaves cell (into water) / eq ;	
5. { O ₂ / oxygen / CO ₂ / carbon dioxide} are {small / non-polar} (molecules);	
6. reference to <i>diffusion</i> ;	
7. {reference to / description} (suitable) concentration gradient;	
8. reference to <i>large surface area (to volume ratio)</i> ;	(4)
	 (QWC – Spelling of technical terms must be correct and the answer must be organised in a logical sequence) 1. (gas exchange) occurs through the { cell membrane / phospholipid bilayer }; 2. idea that the membrane is thin ; 3. oxygen enters cell (from water) / eq ; 4. carbon dioxide leaves cell (into water) / eq ; 5. { O₂ / oxygen / CO₂ / carbon dioxide} are { small / non-polar} (molecules) ; 6. reference to diffusion ; 7. {reference to / description} (suitable) concentration gradient ; 8. reference to large surface area (to volume

Question Number	Answer	Mark
4 (b)	 reference to diffusion (in the cytoplasm) ; through the cytoplasm / description of part of cytoplasm / eq ; down a concentration gradient (in the cytoplasm) / eq ; 	
		(2)