Questions Q1. Spermatogenesis is the process that results in the production of sperm cells. The diagram shows a mature human sperm cell. Human sperm cells contain centrioles but human egg cells do not. Explain the role of the centrioles in sperm cells following fertilisation. | (3) | |-----| | | | | | | | | | | | | | • | | | | | (Total for question = 3 marks) A zygote is formed when gametes fuse at fertilisation. (Total for question = 3 marks) ### Q2. | Describe how the process of fertilisation results in the formation of a zygote from the gametes in humans. | | |--|-----| | | (3) | #### Q3. Spermatogenesis is the process that results in the production of sperm cells. *Male infertility can be caused by a number of factors related to sperm cells: - low sperm count - structural defects of sperm cells - absence of an acrosome - mutations in the mitochondrial DNA - chromosome mutations. The diagrams show a normal sperm cell and some sperm cells with structural defects. Comment on how each of these five factors could result in male infertility. (6) (Total for question = 6 marks) #### Q4. Spermatogenesis is the process that results in the production of sperm cells. The diagram shows a mature human sperm cell. (i) Which row of the table shows the type of nuclear division that takes place in spermatogonia and in primary spermatocytes? (1) | | | Spermatogonia | Primary spermatocytes | |---|---|---------------|-----------------------| | | Α | meiosis I | meiosis II | | | В | meiosis I | mitosis | | Ň | C | mitosis | mitosis | | 1 | D | mitosis | meiosis I | (ii) Which of the following pairs of cells are haploid? (1) - A primary spermatocytes and secondary spermatocytes - B primary spermatocytes and spermatids - C secondary spermatocytes and spermatids - D spermatogonia and primary spermatocytes (Total for question = 2 marks) #### Q5. The diagram shows the structure of an animal cell. The diagram shows the development of a zygote into a blastocyst. The graph shows how the ratio of the volume of the nucleus to the volume of the cytoplasm of each embryonic cell changes as the blastocyst develops. (i) The ratio shown in the graph can be calculated using the formula On day 2, the volume of the cell nucleus was 900 μm^3 . Calculate the total volume of this cell on day 2. Give your answer to two significant figures. (3) (Total for question = 6 marks) | | Answer | | µm³ | |--|----------------------|--------------------------|-----| | (ii) Comment on the changes in the ratio | s as the zygote deve | elops into a blastocyst. | | | | | | (3) | Q6. Answer the question with a cross in the box you think is correct \boxtimes . If you change your mind about an answer, put a line through the box \boxtimes and then mark your new answer with a cross \boxtimes The diagram summarises the process of oogenesis in humans. Which row contains the names for cells P, Q and R? | | Р | Q | R | |-----|-----------|------------|------------| | □ A | germ cell | oocyte | polar body | | В | germ cell | polar body | ovum | | □ c | oocyte | polar body | ovum | | □ D | ovum | germ cell | oocyte | (Total for question = 1 mark) (1) (2) Q7. Male fertility can be determined by a number of different factors. Male fertility can be estimated using scales that take into account the number of sperm, their mobility and the percentage with a normal 'head'. To calculate male fertility using these scales: - draw a straight line between the observed number of sperm (scale A) and the percentage of sperm motile after 2 hours (scale C) - from the intersection of this line with scale B, draw another straight line to scale E (the percentage of normal-headed sperm) - the point where this second line crosses scale D (the fertility index), provides a relative assessment of fertility. - (i) Estimate the fertility of a man who produces a semen sample with: - 25 million sperm per cm³ - 35% of which are motile after 2 hours and - 84% of which have normal heads. | Answer | |---| | (ii) Deduce why fertilisation is unlikely to occur if there are 5 million spermatozoa per cm ³ . | | (1) | | | | | | | | (Total for question = 3 marks) | #### Q8. A study determined the number of oocytes in human females of different ages. The table shows the results of this study. | Age / years | Mean number of oocytes per female | |-------------|-----------------------------------| | at birth | 733 000 | | 4 to 10 | 499 200 | | 11 to 17 | 389 300 | | 18 to 24 | 161 800 | | 25 to 31 | 80 200 | | 32 to 38 | 32 500 | | 39 to 45 | 10 900 | (i) Calculate the percentage change in the mean oocyte numbers between birth and 11 to 17 years. (2) | | Answer | |---|--------------| | (ii) Deduce when oocytes are produced in a fe | emale human. | | | (1) | | | | | | | | | | (Total for question = 3 marks) Male fertility can be determined by a number of different factors. The mean volume of the semen produced by a male ejaculation is 3.4 cm³. This contains a mean concentration of 17 000 sperm mm⁻³. Calculate the mean total number of sperm in a single ejaculation. Give your answer in standard form. (2) Answer (Total for question = 2 marks) | \sim | 4 | ^ | |--------|---|---| | IJ | 1 | u | | | | | Male fertility can be determined by a number of different factors. The distance from the point of ejaculation in the vagina to the upper end of the fallopian tube (where fertilisation takes place) is 19 cm. Some sperm travel this distance in three hours. Calculate the mean speed of these sperm in cm min⁻¹. (1) Answer (Total for question = 1 mark) ## **Edexcel (B) Biology A-level - Sexual Reproduction in Mammals** #### Q11. | So | me men are infertile due to a condition called azoospermia. | | |---------|---|-----| | | en with this condition produce semen that contains spermatids instead of mature ermatozoa. | | | (i) | State one structural difference between a spermatid and a mature spermatozoon. | (1) | | | | | | •• | | • | | (ii) | Explain why men with azoospermia are infertile. | (2) | | ••• | | • | | | | | | | | | | | Infertility caused by azoospermia can be treated by using intracytoplasmic sperm ection (ICSI). | | | | This procedure injects a single spermatid directly into an ooctye. One concern about this procedure is that it uses selected spermatids. This eliminates the normal competition between sperm that precedes fertilisation. Explain the advantage of competition between sperm. | | | | | (2) | | •• | | • | | ••• | | - | | •• | | • | |
(iv |) Describe two ethical implications of the use of ICSI. | • | | (10 | y Bosonibo two outloar implications of the doc of foot. | (2) | | | | | | | | | | | | _ | | | | | (Total for question = 7 marks) #### Q12. *In vitro* fertilisation (IVF) is a technique in which eggs are taken from the ovaries and fertilised with sperm in a laboratory. The resulting embryos are cultured until the four-cell stage, as shown in the diagram. Two screening techniques used to identify embryos with chromosomal abnormalities are: - polar body biopsy in which the polar bodies are removed and the chromosomes analysed - pre-implantation genetic diagnosis (PGD) in which one cell from the four-cell stage embryo is removed and the chromosomes analysed. Embryos without chromosome abnormalities are placed into the mother's uterus. Analyse the data to comment on the effectiveness of the two techniques. The success rates of both techniques are shown in the table. | Technique | Percentage of embryos that survive screening (%) | Percentage of embryos
transferred to the uterus that
lead to the birth of baby (%) | |-------------------|--|--| | Polar body biopsy | 87 | 21 | | PGD | 74 | 29 | | Control | IVF with no screening | 16 | | | (4) | |---------------------------|-------| (Total for question = 4 m | narks | Q13. Leigh syndrome is a genetic disorder inherited from the mother. The mother carries genes for the disorder in her mitochondrial DNA. Scientists have developed a technique for producing 'three-parent' babies. This ensures that a mother with Leigh syndrome will not pass on the genes for this disorder to her baby. The technique involves: - removing the nucleus from the ovum of the mother - removing the nucleus from the ovum of a donor female to produce an enucleated ovum - inserting the nucleus from the ovum of the mother into the enucleated donor ovum (i) The 'three-parent' baby produced by this technique will inherit mitochondrial DNA from - fertilising this ovum with the sperm of the father to produce a zygote - implanting the resulting embryo into the uterus of the mother. | uic | - | | | (() | |-----|----------------|------------------|--|-------| | | **
**
** | A
B
C
D | donor female
donor female and father
mother
mother and father | (1) | | | | plain
cyst. | the importance of DNA replication during the development of this zygote into a | l | | | | | | (3) | | | | | | | | | | | | | | •• | | | | | | ••• | (Total for question = 4 marks) Q14. Mitochondrial disorders may be caused by mutations in the genes coding for mitochondrial components. Some of these genes are found in mitochondrial DNA (mtDNA) and some are found in nuclear DNA. Leigh syndrome is an example of a mitochondrial disorder. In this syndrome, a number of different proteins involved in respiration are affected. These mutations may be inherited or may occur when DNA replicates. | Explain why mutations in nuclear DNA can be inherited from either the whereas mutations in mtDNA are only inherited from the mother. | mother or the father | |--|----------------------| | | (2) | | | | | | | | | | | | | (Total for question = 2 marks) #### Q15. In some diploid organisms, haploid cells are produced by meiosis. The diagram shows an animal cell at various stages during the first division of meiosis. In mammals, meiosis occurs during oogenesis and spermatogenesis. Describe how the products of oogenesis differ from the products of spermatogenesis in mammals. | (4 | |----| | | | | | | | | | | | | | | | | | | (Total for question = 4 marks) #### Q16. In mammals, gametes are produced by spermatogenesis and oogenesis. The diagram shows some of the stages in spermatogenesis. | (i) Explain the significance of mitosis in stage 1 of spermatogenesis. | | |---|-----| | | (2) | | | | | | | | | | | | | | (ii) Explain the events that take place in stage 2, that result in genetic variation. | | | | (4) | | | | | | | | | | | | | | | | | | | # Edexcel (B) Biology A-level - Sexual Reproduction in Mammals | (iii) Compare and contrast the products of stage 2 and stage 3 in spermatogenesis with the
products from these stages in oogenesis. | ì | |---|----| | | 3) | (iv) Explain the importance of the acrosome that develops during stage 4. | | | | 2) | | | | | | | | | | | | | | | | | | | (Total for question = 11 marks) #### Q17. In mammals, gametes are produced by spermatogenesis and oogenesis. The effect of storage time on sperm was investigated. The table shows some results of this investigation. | Storage time
/hours | Percentage of sperm with
structural defects (%) | Percentage of sperm that could swim (%) | |------------------------|--|---| | 0 | 8.2 ± 3.9 | 85.0 ± 5.7 | | 6 | 9.5 ± 3.1 | 67.5 ± 11.0 | | 12 | 18.0 ± 3.9 | 66.3 ± 7.5 | | 18 | 21.3 ± 6.1 | 67.5 ± 2.8 | | 24 | 19.5 ± 3.1 | 58.8 ± 8.5 | | 30 | 26.5 ± 3.1 | 41.3 ± 7.5 | | Analyse the data to comment on conclusions that can be made from this investigation. | | |--|----| | | 4) | (Total for question = 4 marks) Q18. Answer the question with a cross in the box you think is correct \boxtimes . If you change your mind about an answer, put a line through the box \boxtimes and then mark your new answer with a cross \boxtimes . (i) The table shows the chromosome number and chromatid number of some of the cells formed during oogenesis in humans. | Cell type | Chromosome number | Chromatid number | | |------------------|-------------------|------------------|--| | ovum | 23 | 23 | | | primary oocyte | 46 | 92 | | | secondary oocyte | 23 | 46 | | | | Wh | nich (| of the cells are haploid? | (4) | |------|----------------|------------------|--|-----| | | **
**
** | A
B
C
D | ovum and primary oocyte ovum and secondary oocyte primary oocyte and secondary oocyte ovum alone | (1) | | (ii) | Ex | plair | n how meiosis produces new combinations of alleles in gametes. | | | | | | | (4) | | ••• | | | | • | | ••• | | | | • | | ••• | | | | • | | | | | | • | | | | | | | | | | | | | | ••• | | | | • | | | | | | | | | | | | | | ••• | | | | | | ••• | | | | | | | | | | | (Total for question = 5 marks) | <u></u> | 4 | a | |---------|---|----| | u | • | Э. | | Male fertility can be determined by a number of different factors. | | |--|---| | Describe the process of spermatogenesis. | | | (4 |) | (Total for question = 4 marks |) | # Mark Scheme #### Q1. | Question
Number | Answer | Additional Guidance | Mark | |--------------------|--|---|------------| | | An explanation that makes reference to the following: | | | | | to be the source of centrioles in the zygote (1) | ACCEPT fertilised egg cell / cell resulting from fertilisation IGNORE egg | (2) | | | so that the spindle (fibres) can be
synthesised (in the zygote / embryo) (1) | DO NOT ACCEPT meiosis | (3)
EXP | | | so that the (fertilised egg cell /zygote)
can divide by mitosis (to form the
embryo) (1) | | | ### Q2. | Question
Number | Answer | Additional Guidance | Mark | |--------------------|--|--|------------| | Number | A description that makes reference to three of the following: • (contact between sperm and secondary oocyte results in) acrosome reaction (1) | PENALISE 'egg' once ACCEPT ovum / egg cell / female gamete description e.g. enzymes are released from the acrosome DO NOT ACCEPT if described after cortical reaction or fusion of two cells | | | | meiosis is completed (1) cortical reaction takes place (1) | ACCEPT description e.g. cortical granules are released that {hardens the membrane / forms a fertilisation membrane} | (3)
EXP | | | fusion of sperm {nucleus / genetic
material} with {nucleus genetic material}
of ovum (1) | ACCEPT egg cell / nuclei of the gametes | | ## Q3. | Question
Number | Indicative content | | |--------------------|---|--| | * | Low sperm counts: | Level 1: | | | fewer sperm arriving at the egg cell, reducing the likelihood of fertilisation not enough enzymes released for fertilisation | 1 mark = effect of one factor commented | | | Absence of an acrosome: | on | | | sperm will not be able to digest through (the outer membrane of egg cell) therefore {nucleus / genetic material} will not be released inside the egg cell | 2 marks =
effects of two
factors commented
on | | | Mutations in the mitochondrial DNA: | Level 2: | | | less energy available for flagellum without energy sperm will not be able to swim
(through female) | 3 marks = effects of three factors commented on | | | Chromosomal mutations: | 4 marks = | | | could result in {lack of / too much} genetic material cell division maybe affected embryo maybe defective and not develop | effects of four
factors commented
on | | | Structural defects: | Level 3: | | | defect in head may prevent penetration of sperm into egg cell defects in flagellum could prevent motility two heads might prevent entry into egg cell* small head may not contain {an acrosome / a | 5 marks = effects of all five factors commented on | | | nucleus}* • misshapen head may {not be able to penetrate egg cell / impair motility}* | 6 marks = effects of all five factors commented | | | two flagella may {get tangled up together / not receive sufficient energy for swimming}* short flagella may not provide enough motility* | on but includes one
specific types of
structural defects* | | | no mid piece would mean no energy for swimming* | | ## Q4. | Question
Number | Answer | Mark | |--------------------|--|-------------| | (i) | The only correct answer is D | | | | A is incorrect because spermatogonia divide by mitosis and primary spermatocytes divide in meiosis I to form secondary spermatocytes B is incorrect because spermatogonia divide by mitosis and primary spermatocytes divide in meiosis I to form secondary spermatocytes C is incorrect because spermatogonia divide by mitosis and primary spermatocytes divide in meiosis I to form secondary spermatocytes | (1)
COMP | | (ii) | The only correct answer is C A is incorrect because primary spermatocytes are diploid B is incorrect because primary spermatocytes are diploid D is incorrect because primary spermatocytes are diploid | (1)
COMP | ### Q5. | Question
Number | Answer | Additional Guidance | Mark | |--------------------|---|--|-------| | (i) | | Example: | | | | correct reading from graph (1) | 17 or 16 | | | | correct calculation of mean total cell volume (1) | 952.94 or 956.25 (ignore dps) | | | | | 950 or 960 | | | | correct conversion into two
significant figures (1) | (952.94 or 956.25 gains two marks)
(950 or 960 gains three marks) | | | is a | | Correct answer with no working gains full marks | 3 ехр | | Question
Number | Answer | Additional Guidance | Mark | |--------------------|--|---|-------| | (ii) | An answer that makes reference to three of the following points: | | | | | (ratio) ICM increases up to 3/4 days (at a steady rate) / trophectoderm cells increase up to 3/4/5 days (1) | Accept ratio increases up to 3 days | | | | 000.0000000000000000000000000000000000 | Accept faster increase for ICM cells | | | | (after 3/4 days) ratios increases more
steeply for ICM cells / (after 3/4/5
days) levels off for trophectoderm cells
(1) | | | | | (as ratio increases) {volume of
cytoplasm / volume of cells}
decreases (over time) (for ICM cells) (1) | Accept ICM divide faster than trophectoderm cells | 3 ехр | | 6 | cells are differentiating (1) | | | ### Q6. | Question
Number | Answer | Mark | |--------------------|---|------| | | The only correct answer is A | | | | B is not correct because Q is not a polar body | | | | C is not correct because P is a germ cell not an oocyte | | | | D is not correct because P is a germ cell not an ovum | (1) | ## Q7. | Question
Number | Answer | Additional Guidance | Mark | |--------------------|---|---------------------|------| | (i) | two correct straight lines drawn (1) | | | | | • possibly fertile (1) | Allow 11 - 13 | (2) | | Question
Number | Answer | Additional Guidance | Mark | |--------------------|--|--------------------------------|------| | (ii) | off the bottom of the scale
therefore person is infertile | Allow infertile (on the scale) | | | | | | (1) | ### Q8. | Question
Number | Answer | Additional Guidance | Mark | |--------------------|---|---|------| | (i) | A calculation that shows: | Example of calculation | | | | data read from table and subtracted (1) | • 733000 – 389300 = 343700 | | | | percentage change calculated (1) | 343700 / 733000 X 100/1 = 46.9% ACCEPT both positive and negative answers correct answer gets both marks | | | | | ACCEPT 47% and 46.89% | (2) | | Question
Number | Answer | Additional Guidance | Mark | |--------------------|---------------------------|------------------------------------|------| | (ii) | produced before birth (1) | ACCEPT during gestation, pregnancy | (1) | ## Q9. | Question
Number | Answer | Additional Guidance | Mark | |--------------------|---|-------------------------------------|------| | | A calculation that shows: | Example of calculation | | | | total number of spermatozoa
calculated (1) | • 3400 × 17000 | | | | answer given in standard form (1) | • = 5.8 × 10 ⁷ | | | | | Allow 5.78 × 10 ⁷ | (2) | ## Q10. | Question
Number | Answer | Additional Guidance | Mark | |--------------------|--|---|------| | | A calculation that shows: | Example of calculation | | | | • speed of sperm travel
= 0.11 cm min ⁻¹ | 3 × 60 = 180
19 ÷ 180 = 0.11 / 0.106 | | | 9 | | 0 | (1) | ### Q11. | Question
Number | Answer | Additional Guidance | Mark | |--------------------|--|--|------| | (i) | spermatids have no {tail / flagellum / acrosome} (1) | ACCEPT converse / spermatids have fewer
{enzymes / mitochondria } | (1) | | Question
Number | Answer | Additional Guidance | Mark | |--------------------|---|---|------| | (ii) | An explanation that makes reference to the following: | | | | | spermatids are non–motile / cannot
swim to the egg (1) | ACCEPT stationary | | | | therefore spermatids are unable to
penetrate the egg (1) | ACCEPT so no fusion with the oocyte occurs
/ no acrosome reaction / unable to fertilise
the egg | (2) | | Question
Number | Answer | Additional Guidance | Mark | |--------------------|--|---|------| | (iii) | An explanation that makes reference to the following: | | | | | {fittest / fastest / most developed / healthiest } will fertilise the oocyte (1) | ACCEPT converse | | | | therefore pass on advantageous alleles (1) | ACCEPT natural selection can take place | (2) | # Edexcel (B) Biology A-level - Sexual Reproduction in Mammals | Question
Number | Answer | Additional Guidance | Mark | |--------------------|---|---------------------|------| | (iv) | A description that makes reference to two of the following: | | | | | interference with natural process e.g.
fertilising male gamete chosen by doctor
rather than natural competition (1) | | | | | embryo may be abnormal because of
{lack of competition from other sperm/
lack of natural selection / damage due to
technique / chromosome abnormality /
gene mutation passed on} (1) | | (2) | | | provides possibility of {eugenics /
artificial selection / designer babies} (1) | | | ## Q12. | Question
Number | Answer | Additional Guidance | Mark | |--------------------|--|--|------| | | An answer that makes reference to four of the following: • {screening / both techniques} are {more effective / produce more births} than control (1) | ACCEPT converse | | | | more embryos survive
screening with polar body
biopsy than PGD / polar body
biopsy is less damaging than
PGD (1) | ACCEPT converse ACCEPT 21.46 / 21.5 / | | | | PGD more effective (than polar
body biopsy) / PGD produces
more births (than polar body
biopsy) (1) | 18.27 / 18.3
ACCEPT 0.21 / 0.215 / 0.18 / 0.183 / 0.1827
DO NOT ACCEPT just 21% alone | | | | (because) PGD produces 21% births compared to 18% with polar body (1) | ACCEPT ideas that
polar body biopsy only
screens for
abnormalities from
mother / PGD screens
both parents | | | | PGD detects abnormalities in
both paternal and maternal
chromosomes /
polar body biopsy only checks
for maternal chromosome
abnormalities (1) | | (4) | ## Q13. | Question
Number | Answer | Mark | |--------------------|--|------| | (i) | The only correct answer is A | | | | B is not correct because the father's mitochondria do not enter the ovum on fertilisation | | | | C is not correct because only the nucleus was used from the mother | | | | D is not correct because only the nucleus was used from the mother and the father's mitochondria do not enter the ovum on fertilisation | (1) | | Question
Number | Answer | Additional Guidance | Mark | |--------------------|--|--|------| | (ii) | An explanation that makes reference to three of the following: • zygote divides by mitosis (several times to form blastocyst) (1) • to make identical copies of the {DNA (molecules) / chromatids} (1) • so that all cells (in the blastocyst) {will be diploid / have two copies of each chromosome} (1) • so that when the mitochondria divide they will have a copy of the DNA (1) | ACCEPT genetically- identical (daughter) cells / same genetic information ACCEPT correct number of chromosome / 46 chromosomes / 23 pairs ACCEPT mitochondrial DNA divides | (3) | ### Q14. | Question
Number | Answer | Additional Guidance | Mark | |--------------------|---|--|------| | | An explanation that makes reference to the following: | | | | | because nuclear DNA is present in
both the male and female {gametes
/ sex cells } (1) | Accept in male and female
nuclei in the context of
fertilisation | | | | because mitochondria are present in
the { female gamete / ovum /
secondary oocyte / egg cell} and not
the sperm head | Accept mitochondria are present in sperm {neck / mid piece} / mitochondria (DNA) not released by the sperm | | | | (1) | Speriff | (2 | ## Q15. | Question
Number | Answer | Additional Guidance | Mark | |--------------------|---|---|------| | | A description that makes reference to four of the following: | accept references to egg
and sperm | | | | ova { are larger cells / contain more food stores / contain more cytoplasm } (1) | | | | | spermatozoa contain an
acrosome, ova do not (1) | accept sperm are motile
while ova are not | | | | spermatozoa has a {tail /
flagellum / microtubules},
ova do not (1) | | | | | ova are surrounded by the
{zona pellucida / other
cells}, spermatozoa are not
(1) | accept each spermatid may
produce a spermatozoa /
the number of spermatozoa
produced are much higher | | | | oogenesis produces polar
bodies, spermatogenesis
does not (1) | than the number of ova | | | | | | (4) | ### Q16. | Question
Number | Answer | Additional
Guidance | Mark | |--------------------|--|------------------------|------------| | (i) | An explanation that makes reference to two of the following: | | 12 | | | to produce several diploid primary
spermatocytes (1) | | | | | so that lots of sperm can be
produced from a single
spermatogonium (1) | | (2)
EXP | | | to replace the spermatogonia (1) | | | | Question
Number | Answer | Additional
Guidance | Mark | |--------------------|---|--|------------| | (ii) | An explanation that makes reference to the following: | | | | | crossing over (in prophase I) (1) | | | | | to produce new combinations of alleles
on a chromatid (1) | | | | | independent assortment (in metaphase i) (1) | increase variety of combinations of maternal and | (4)
EXP | | | to increase the combination of
chromosomes in eachdaughter
cell (1) | paternal chromatids
/ alleles | | | Question
Number | Answer | Additional
Guidance | Mark | |--------------------|---|------------------------|------------| | | An answer that makes reference to one | | | | (iii) | similarity and twodifferences : | | | | | Similarities | | | | | haploid cells produced from diploid
cells in both (1) | | | | | Differences | | | | | {stage 2 / meiosis I} results in two
secondary spermatocytesbut only one
secondary oocyte (1) | | | | | {stage 3 / meiosis II} results in four
spermatids but one
{ovum / egg cell} (1) | | (3)
EXP | | | polar bodies are produced in
oogenesis but not in
spermatogenesis (1) | | | | Question
Number | Answer | Additional
Guidance | Mark | |--------------------|---|------------------------|------------| | (iv) | An explanation that makes reference to the following: | | | | | Contains enzymes (1) | | | | | to enable the sperm to digest through
the membrane of the(secondary
occyte) (1) | | (2)
EXF | ## Q17. | Question
Number | Answer | Additional
Guidance | Mark | |--------------------|--|---|------------| | 3 | An answer that makes reference to four of the following: | | | | | storage time increases the
percentage of sperm with
structural defects (1) | | | | | storage time decreases the
percentage of sperm that canswim (1) | ACCEPT clear use of data to illustratepoint | | | | because the error bars for no
storage and 30 hours ofstorage
do not overlap (1) | ACCEPT clear use of data to illustratepoint | | | | increase in storage time may not
correlate with an increase inthe number
of defects and / or decrease in the
number of sperm that can swim (1) | | (4)
EXP | | | as a number of the error bars {overlap / are large} (in bothsets of data) (1) | | | ## Q18. | Question
Number | Answer | Additional Guidance | Mark | |--------------------|--|--|------| | (i) | B ovum and secondary oocyte A is incorrect because secondary oocyte is diploid C is incorrect because the secondary oocyte is diploidD is incorrect because the primary oocyte is diploid | | 1 | | (ii) | An explanation that makes reference to: crossing over (1) which swaps {alleles / DNA / genes} between {homologous chromosomes} (1) independent / random assortment (1) | | | | | because it is random
movement of
homologous
chromosomes to poles (1) | Allow random movement of paternaland maternal chromosomes / random combinations of paternal and maternal chromosomes | 4 | ### Q19. | Question
Number | Answer | Additional Guidance | Mark | |--------------------|---|---------------------|------| | | An description that makes reference to four of the following: | | | | | germ cells divide by mitosis / form
{spermatogonia / primary
spermatocytes} (1) | | | | | which divide by meiosis to form
secondary spermatocytes (1) | | | | | which divide to form spermatids / 2 nd
meiotic division forms haploid
spermatids (1) | | | | | which develop into {(mature)
spermatozoa / sperm} (1) | Allow differentiate | | | | which includes {an acrosome /
flagellum} (1) | | (4) |