	responses to infection.								
	(a) (i)	Describe how the production and action of interferon differs from the production and action of lysozyme.	(3)						
•••••	(ii)	Suggest why the protein structure of lysozyme is important to the way in which it acts against pathogens.	(4)						

	(Total for Question 1 = 13 i	marks)
		(3)
	Suggest why applying this cream might be better than taking tablets containing antihistamines.	
	(ii) In order to reduce inflammation, a cream containing antihistamines might be applied to the skin, around an insect bite.	e
		(3)
	(i) Explain why an insect bite, which breaks the surface of the skin, may lead to inflammation around the injury.	
(b)	Following a bite by an insect, the area around the bite may show signs of inflammation as histamine is released.	

2	The sequence of amino acids in a polypeptide chain is determined by the sequence of bases in DNA. This sequence of bases is used as a template to synthesise messenger RNA (mRNA).					
	(a) Describe the structure of an amino acid.	(2)				
	(b) Describe how mRNA is synthesised.	(4)				

(c) The table below shows the amino acids coded for by the codons on **mRNA**.

Three-letter codons of mRNA and the amino acids specified by the codons										
AAUAsparagine	CAU Histidine	GAU Asparatic acid	UAU UAC Tyrosine							
AAALysine	CAA	GAA GAG Glutamate	UAA UAG Stop							
ACU ACC ACA ACG	CCU CCC CCA CCG	GCU GCC GCA GCG	UCU UCC UCA UCG							
AGUSerine	CGU – CGC – Arginine	GGU GGC GGA Glycine	UGU Cysteine							
AGAArginine	CGA CGG — Arginine	GGA GGG	UGA— Stop UGG— Tryptophan							
AUU – Isoleucine AUA	CUU – CUC CUA Leucine	GUU GUC GUA Valine	UUU UUC Phenylalanine							
AUG —Methionine	CUG _	GUG	UUA Leucine							

The diagram below shows part of a messenger RNA molecule.

(i)	Place a cross ⊠ in the box next to the complementary sequence of bases found on the strand of the DNA molecule, from which part of this mRNA molecule was synthesised.											(1)		
×	A	G	G	Т	Α	Α	G	C	G	C	C	Т	Т	
×	В	G	G	U	Α	Α	C	G	C	G	G	Α	A	
×	C	Α	Α	C	G	G	Α	U	Α	U	U	G	G	
×	D	Α	Α	C	G	G	Α	Т	Α	Т	Т	G	G	
(ii) Place a cross ⊠ in the box next to the sequence of amino acids found in the polypeptide chain that is coded for by this part of the mRNA molecule.											(1)			
A proline lysine alanine valine														
×	■ B proline phenylalanine alanine valine													
×	☑ C glycine lysine arginine glutamine													
D proline lysine alanine glutamine														
(iii) Place a cross ⊠ in the box next to the final codon on this mRNA molecule if GUU is the last codon for an amino acid.											(1)			
×	A	AGI	J											
×	В	ACL	J											
×	C	UCA	Ą											
×	D	UGA	4											
	(Total for Question 2 = 9 marks)											rks)		

3	3 The questions below refer to some important biological molecules. Place a cross (⋈) in the most appropriate box that describes the structure or role of these biological molecules.						
	(a) Disaccharides can be split by						
	⊠ A	hydrolysis of glycosidic bonds	(1)				
	⋈ B	condensation of glycosidic bonds					
	⊠ C	hydrolysis of ester bonds					
	■ D	condensation of ester bonds					
	(b) Am	ylose is an example of a	(1)				
	⊠ A	monosaccharide					
	⊠ B	disaccharide					
	⊠ C	polysaccharide					
	⊠ D	trisaccharide					
	(c) The	e role of starch is to	(1)				
	⊠ A	be a source of energy to plants					
	⊠ B	store energy in all living organisms					
	⊠ C	store energy in plants					
	⊠ D	store energy in animals					
	(d) Pro the	teins are polymers of amino acids joined by peptide bonds formed between	(1)				
	⊠ A	R groups	(1)				
	⋈ B	R group and the amino group					
	⊠ C	R group and the carboxyl group					
	⋈ D	carboxyl group and the amino group					

(e)	The	three-dimensional structure of a protein is held together by	(1)
X	Α	peptide, hydrogen and ionic bonds	
X	В	hydrogen, ester and ionic bonds	
X	C	disulphide bridges and ester bonds	
X	D	disulphide bridges, hydrogen and ionic bonds	
(f)	DNA	A consists of mononucleotides joined together by bonds between	(1)
X	A	two pentose sugars	
X	В	one ribose sugar and one phosphate group	
X	C	one deoxyribose sugar and one phosphate group	
X	D	two phosphate groups	
(g)	Wat	er is described as a dipolar molecule because it has a	(1)
X	A	positively charged hydrogen end and a negatively charged oxygen end	
X	В	positively charged hydrogen end and a positively charged oxygen end	
X	C	negatively charged hydrogen end and a negatively charged oxygen end	
X	D	negatively charged hydrogen end and a positively charged oxygen end	
		(Total for Question 3 = 7 ma	rks)